def plot_2d_input_weights():
    name = 'XeAe'
    weights = get_2d_input_weights()
    fig = b.figure(fig_num, figsize = (18, 18))
    im2 = b.imshow(weights, interpolation = "nearest", vmin = 0, vmax = wmax_ee, cmap = cmap.get_cmap('hot_r'))
    b.colorbar(im2)
    b.title('weights of connection' + name)
    fig.canvas.draw()
    return im2, fig
Exemple #2
0
def plot_2d_excitatory_weights():
	name = 'AeAe' + str(n_e)
	weights = get_2d_excitatory_weights()
	fig = b.figure(fig_num, figsize=(10, 10))
	im2 = b.imshow(weights, interpolation='nearest', vmin=0, vmax=wmax_ee, cmap=cmap.get_cmap('hot_r'))
	b.colorbar(im2)
	b.title('weights of connection ' + name)
	fig.canvas.draw()
	return im2, fig
def plot_patch_weights():
	'''
	Plot the weights between convolution patches to view during training.
	'''
	weights = get_patch_weights()
	fig, ax = b.subplots(figsize=(8, 8))
	im = ax.imshow(weights, interpolation='nearest', vmin=0, vmax=wmax_ee, cmap=cmap.get_cmap('hot_r'))
	b.colorbar(im)
	b.title('Between-patch connectivity')
	fig.canvas.draw()
	return im, fig
def plot_performance(fig_num):
    num_evaluations = int(num_examples/update_interval)
    time_steps = range(0, num_evaluations)
    performance = np.zeros(num_evaluations)
    fig = b.figure(fig_num, figsize = (5, 5))
    fig_num += 1
    ax = fig.add_subplot(111)
    im2, = ax.plot(time_steps, performance) #my_cmap
    b.ylim(ymax = 100)
    b.title('Classification performance')
    fig.canvas.draw()
    return im2, performance, fig_num, fig
Exemple #5
0
correctionDiffIdxs = np.where(diffLastActivity > 0.5)[0]
correctedPopDiff = [1 - diffLastActivity[i] if (i in correctionDiffIdxs) else diffLastActivity[i] for i in xrange(len(diffLastActivity))]

print correctedErrorSum


rcParams['lines.color'] = 'w'
rcParams['text.color'] = 'w'
rcParams['xtick.color'] = 'w'
rcParams['ytick.color'] = 'w'
rcParams['axes.labelcolor'] = 'w'
rcParams['axes.edgecolor'] = 'w'

b.figure()
b.scatter(resultMonitor[start_time:end_time,2], correctedError, c=range(len(error)), cmap=cmap.gray)
b.title('Error: ' + str(correctedErrorSum))
b.xlabel('Activity in B')
b.ylabel('Error')


fi = b.figure(figsize = (5.0,4.6))
ax = plt.subplot(1,1,1)
matplotlib.rcParams.update({'font.size': 22})
b.scatter(resultMonitor[start_time:end_time,1]*1600, resultMonitor[start_time:end_time,0]*1600, c='k', cmap=cmap.gray) #range(len(error))
# b.title('Error: ' + str(correctedErrorSum))
# b.xlabel('Desired activity')
# b.ylabel('Population activity')
ax.set_xticks([0,800,1600])     
ax.set_xticklabels(['0', '800', '1600'])
ax.set_yticks([0,800,1600])     
ax.set_yticklabels(['0', '800', '1600'], va='center')
    save_connections()
else:
    np.save(data_path + 'activity/resultPopVecs' + str(num_examples), result_monitor)
    np.save(data_path + 'activity/inputNumbers' + str(num_examples), input_numbers)
    

#------------------------------------------------------------------------------ 
# plot results
#------------------------------------------------------------------------------ 
if rate_monitors:
    b.figure(fig_num)
    fig_num += 1
    for i, name in enumerate(rate_monitors):
        b.subplot(len(rate_monitors), 1, i)
        b.plot(rate_monitors[name].times/b.second, rate_monitors[name].rate, '.')
        b.title('Rates of population ' + name)
    
if spike_monitors:
    b.figure(fig_num)
    fig_num += 1
    for i, name in enumerate(spike_monitors):
        b.subplot(len(spike_monitors), 1, i)
        b.raster_plot(spike_monitors[name])
        b.title('Spikes of population ' + name)
        
if spike_counters:
    b.figure(fig_num)
    fig_num += 1
    for i, name in enumerate(spike_counters):
        b.subplot(len(spike_counters), 1, i)
        b.plot(spike_counters['Ae'].count[:])
    def plotResults(self):
        #------------------------------------------------------------------------------ 
        # plot results
        #------------------------------------------------------------------------------ 
        if self.rateMonitors:
            b.figure()
            for i, name in enumerate(self.rateMonitors):
                b.subplot(len(self.rateMonitors), 1, i)
                b.plot(self.rateMonitors[name].times/b.second, self.rateMonitors[name].rate, '.')
                b.title('rates of population ' + name)
            
        if self.spikeMonitors:
            b.figure()
            for i, name in enumerate(self.spikeMonitors):
                b.subplot(len(self.spikeMonitors), 1, i)
                b.raster_plot(self.spikeMonitors[name])
                b.title('spikes of population ' + name)
                if name=='Ce':
                    timePoints = np.linspace(0+(self.singleExampleTime+self.restingTime)/(2*b.second)*1000, 
                                             self.runtime/b.second*1000-(self.singleExampleTime+self.restingTime)/(2*b.second)*1000, 
                                             self.numExamples)
                    b.plot(timePoints, self.resultMonitor[:,0]*self.nE, 'g')
                    b.plot(timePoints, self.resultMonitor[:,1]*self.nE, 'r')
        
        if self.stateMonitors:
            b.figure()
            for i, name in enumerate(self.stateMonitors):
                b.plot(self.stateMonitors[name].times/b.second, self.stateMonitors[name]['v'][0], label = name + ' v 0')
                b.legend()
                b.title('membrane voltages of population ' + name)
            
        
            b.figure()
            for i, name in enumerate(self.stateMonitors):
                b.plot(self.stateMonitors[name].times/b.second, self.stateMonitors[name]['ge'][0], label = name + ' v 0')
                b.legend()
                b.title('conductances of population ' + name)
        
        plotWeights = [
        #                 'XeAe', 
        #                 'XeAi', 
        #                 'AeAe', 
        #                 'AeAi', 
        #                 'AiAe', 
        #                 'AiAi', 
        #                'BeBe', 
        #                'BeBi', 
        #                'BiBe', 
        #                'BiBi', 
        #                'CeCe', 
        #                'CeCi', 
                        'CiCe', 
        #                'CiCi', 
        #                'HeHe', 
        #                'HeHi', 
        #                'HiHe', 
        #                'HiHi', 
                        'AeHe',
        #                 'BeHe',
        #                 'CeHe',
                        'HeAe',
        #                 'HeBe',
        #                 'HeCe',
                       ]
        
        for name in plotWeights:
            b.figure()
#             my_cmap = matplotlib.colors.LinearSegmentedColormap.from_list('own2',['#f4f4f4', '#000000'])
#             my_cmap2 = matplotlib.colors.LinearSegmentedColormap.from_list('own2',['#000000', '#f4f4f4'])
            if name[1]=='e':
                nSrc = self.nE
            else:
                nSrc = self.nI
            if name[3]=='e':
                nTgt = self.nE
            else:
                nTgt = self.nI
                
            w_post = np.zeros((nSrc, nTgt))
            connMatrix = self.connections[name][:]
            for i in xrange(nSrc):
                w_post[i, connMatrix.rowj[i]] = connMatrix.rowdata[i]
            im2 = b.imshow(w_post, interpolation="nearest", vmin = 0, cmap=cm.get_cmap('gist_ncar')) #my_cmap
            b.colorbar(im2)
            b.title('weights of connection' + name)
            
            
        if self.plotError:
            error = np.abs(self.resultMonitor[:,1] - self.resultMonitor[:,0])
            correctionIdxs = np.where(error > 0.5)[0]
            correctedError = [1 - error[i] if (i in correctionIdxs) else error[i] for i in xrange(len(error))]
            correctedErrorSum = np.average(correctedError)
                 
            b.figure()
            b.scatter(self.resultMonitor[:,1], self.resultMonitor[:,0], c=range(len(error)), cmap=cm.get_cmap('gray'))
            b.title('Error: ' + str(correctedErrorSum))
            b.xlabel('Desired activity')
            b.ylabel('Population activity')
             
            b.figure()
            error = np.abs(self.resultMonitor[:,1] - self.resultMonitor[:,0])
            correctionIdxs = np.where(error > 0.5)[0]
            correctedError = [1 - error[i] if (i in correctionIdxs) else error[i] for i in xrange(len(error))]
            correctedErrorSum = np.average(correctedError)
            b.scatter(self.resultMonitor[:,1], self.resultMonitor[:,0], c=self.resultMonitor[:,2], cmap=cm.get_cmap('gray'))
            b.title('Error: ' + str(correctedErrorSum))
            b.xlabel('Desired activity')
            b.ylabel('Population activity')
        
        b.ioff()
        b.show()
Exemple #8
0
    rate_monitors[name + 'e'] = b.PopulationRateMonitor(neuron_groups[name + 'e'], bin=(single_example_time + resting_time) / b.second)
    rate_monitors[name + 'i'] = b.PopulationRateMonitor(neuron_groups[name + 'i'], bin=(single_example_time + resting_time) / b.second)
    spike_counters[name + 'e'] = b.SpikeCounter(neuron_groups[name + 'e'])
    
    if record_spikes:
        spike_monitors[name + 'e'] = b.SpikeMonitor(neuron_groups[name + 'e'])
        spike_monitors[name + 'i'] = b.SpikeMonitor(neuron_groups[name + 'i'])


if record_spikes:
    b.figure(fig_num)
    fig_num += 1
    b.ion()
    b.subplot(211)
    b.raster_plot(spike_monitors['Ae'], refresh=1000 * b.ms, showlast=1000 * b.ms)
    b.title('Excitatory Spikes')
    b.subplot(212)
    b.raster_plot(spike_monitors['Ai'], refresh=1000 * b.ms, showlast=1000 * b.ms)
    b.title('Inhibitory Spikes')


#------------------------------------------------------------------------------ 
# create input population and connections from input populations 
#------------------------------------------------------------------------------ 
pop_values = [0, 0, 0]
for i,name in enumerate(input_population_names):
    input_groups[name + 'e'] = b.PoissonGroup(n_input, 0)
    rate_monitors[name + 'e'] = b.PopulationRateMonitor(input_groups[name + 'e'], bin=(single_example_time+resting_time) / b.second)

for name in input_connection_names:
    print 'create connections between', name[0], 'and', name[1]