Exemple #1
0
    def __init__(self, filterbank, targetvar, *args, **kwds):
        self.targetvar = targetvar
        self.filterbank = filterbank
        filterbank.buffer_init()

        # update level keyword
        kwds['level'] = kwds.get('level', 0) + 1

        # Sanitize the clock - does it have the right dt value?
        if 'clock' in kwds:
            if int(1 / kwds['clock'].dt) != int(filterbank.samplerate):
                raise ValueError('Clock should have 1/dt=samplerate')
        else:
            kwds['clock'] = Clock(dt=1 / filterbank.samplerate)

        buffersize = kwds.pop('buffersize', 32)
        if not isinstance(buffersize, int):
            buffersize = int(buffersize * self.samplerate)
        self.buffersize = buffersize
        self.buffer_pointer = buffersize
        self.buffer_start = -buffersize

        NeuronGroup.__init__(self, filterbank.nchannels, *args, **kwds)

        @network_operation(when='start', clock=self.clock)
        def apply_filterbank_output():
            if self.buffer_pointer >= self.buffersize:
                self.buffer_pointer = 0
                self.buffer_start += self.buffersize
                self.buffer = self.filterbank.buffer_fetch(
                    self.buffer_start, self.buffer_start + self.buffersize)
            setattr(self, targetvar, self.buffer[self.buffer_pointer, :])
            self.buffer_pointer += 1

        self.contained_objects.append(apply_filterbank_output)
Exemple #2
0
    def __init__(self, params=zheng_params, network=None):
        eqs = Equations('''
        G_total                                                       : siemens
        G_total_exc                                                   : siemens
        cmr_o                                                         : 1
        cb                                                            : 1
        g                                                             : 1
        c_ab                                                          : 1
        cb_0                                                          : 1
        g_0                                                           : 1
        ''')

        NeuronGroup.__init__(self, 1, model=eqs, compile=True, freeze=True)

        self.params = params
        self.c_ab = self.params.c_ab
        self.cb_0 = self.params.cb_0
        self.g_0 = self.params.g_0

        self.cb = self.cb_0
        self.g = self.g_0

        if network is not None:
            self.G_total = linked_var(network, 'g_syn', func=sum)
            self.G_total_exc = linked_var(network, 'g_syn_exc', func=sum)
Exemple #3
0
    def initialize_neurongroup(self):
        # Add 'refractory' parameter on the CPU only
        if not self.use_gpu:
            if self.max_refractory is not None:
                refractory = 'refractory'
                self.model.add_param('refractory', second)
            else:
                refractory = self.refractory
        else:
            if self.max_refractory is not None:
                refractory = 0 * ms
            else:
                refractory = self.refractory

        # Must recompile the Equations : the functions are not transfered after pickling/unpickling
        self.model.compile_functions()

        self.group = NeuronGroup(self.neurons,
                                 model=self.model,
                                 reset=self.reset,
                                 threshold=self.threshold,
                                 refractory=refractory,
                                 max_refractory=self.max_refractory,
                                 method=self.method,
                                 clock=Clock(dt=self.dt))

        if self.initial_values is not None:
            for param, value in self.initial_values.iteritems():
                self.group.state(param)[:] = value
Exemple #4
0
 def initialize(self,tau_metric):
     self.delay_range =max(self.delays)- min(self.delays)#delay range
     self.min_delay = abs(min(self.delays))#minimum of possible delay
     self.corr_vector=zeros(self.N) 
     self.norm_pop = zeros(self.N) 
     self.norm_target = zeros(self.N) 
     self.nbr_neurons_group = self.N/self.K
     
     eqs="""
     tau:second
     dv/dt=(-v)/tau: volt
     """
     # network to convolve target spikes with the kernel
     self.input_target=SpikeGeneratorGroup(self.K,self.spikes,clock=self.group.clock)
     self.kernel_target=NeuronGroup(self.N,model=eqs,clock=self.group.clock)
     self.C_target = DelayConnection(self.input_target, self.kernel_target, 'v', structure='sparse',  max_delay=self.min_delay)  
     self.kernel_target.tau=tau_metric
     for igroup in xrange(self.K):
         self.C_target.W[igroup,igroup*self.nbr_neurons_group:(1+igroup)*self.nbr_neurons_group] = ones(self.nbr_neurons_group)
         self.C_target.delay[igroup,igroup*self.nbr_neurons_group:(1+igroup)*self.nbr_neurons_group] =  self.min_delay * ones(self.nbr_neurons_group)
         
     # network to convolve population spikes with the kernel
     self.kernel_population=NeuronGroup(self.N,model=eqs,clock=self.group.clock)
     self.C_population = DelayConnection(self.group, self.kernel_population, 'v', structure='sparse',  max_delay=self.delay_range)
     for iN in xrange(self.N):
         self.C_population.delay[iN,iN] = diagflat(self.min_delay + self.delays[iN])
     self.C_population.connect_one_to_one(self.group,self.kernel_population)
     self.kernel_population.tau=tau_metric
     self.spikecount = SpikeCounter(self.group)
     self.contained_objects = [self.kernel_population,self.C_population,self.spikecount,self.input_target,self.C_target,self.kernel_target]  
def ousim(mu_amp, mu_offs, sigma_amp, sigma_offs, freq, V_th):
    # mu_amp, mu_offs, sigma_amp, sigma_offs, freq, V_th = config
    if sigma_amp > sigma_offs:
        sigma_amp = sigma_offs
    # print("Setting up OU LIF simulation...")
    ounet = Network()
    clock.reinit_default_clock()
    eqs =Equations('dV/dt = mu-(V+V0)/tau + sigma*I/sqrt(dt) : volt')
    eqs+=Equations('dI/dt = -I/dt + xi/sqrt(dt) : 1')
    eqs+=Equations('mu = mu_amp*sin(t*freq*2*pi) + mu_offs : volt/second')
    eqs+=Equations('sigma = sigma_amp*sin(t*freq*2*pi) + sigma_offs :'
                                                        ' volt/sqrt(second)')
    eqs.prepare()
    ounrn = NeuronGroup(1, eqs, threshold=V_th, refractory=t_refr,
                                                                reset=V_reset)
    ounet.add(ounrn)

    ounrn.V = V0
    V_mon = StateMonitor(ounrn, 'V', record=True)
    st_mon = SpikeMonitor(ounrn)
    ounet.add(V_mon, st_mon)

    ounet.run(duration)

    V_mon.insert_spikes(st_mon, value=V_th*2)
    times = V_mon.times
    membrane = V_mon[0]
    return times, st_mon.spiketimes[0], membrane
def pif_reset():
    defaultclock.reinit()
    sim = Network()
    I = 0.2*nA
    R = 1*Mohm
    lifeq = """
    dV/dt = I*R/ms : volt
    Vth : volt
    """
    thstep = 15*mV
    nrn = NeuronGroup(1, lifeq, threshold="V>=Vth", reset="V=0*mV")
    nrn.V = 0*mV
    nrn.Vth = thstep
    sim.add(nrn)

    #connection = Connection(inputgrp, nrn, state="V", weight=0.5*mV)
    #sim.add(inputgrp, connection)

    vmon = StateMonitor(nrn, "V", record=True)
    thmon = StateMonitor(nrn, "Vth", record=True)
    spikemon = SpikeMonitor(nrn, record=True)

    sim.add(vmon, thmon, spikemon)
    sim.run(duration)
    return vmon, thmon, spikemon
Exemple #7
0
    def __init__(self, params=zheng_params, network=None):
        eqs=Equations('''
        G_total                                                       : siemens
        G_total_exc                                                   : siemens
        cmr_o                                                         : 1
        cb                                                            : 1
        g                                                             : 1
        c_ab                                                          : 1
        cb_0                                                          : 1
        g_0                                                           : 1
        ''')

        NeuronGroup.__init__(self, 1, model=eqs, compile=True, freeze=True)

        self.params=params
        self.c_ab=self.params.c_ab
        self.cb_0=self.params.cb_0
        self.g_0=self.params.g_0

        self.cb=self.cb_0
        self.g=self.g_0

        if network is not None:
            self.G_total = linked_var(network, 'g_syn', func=sum)
            self.G_total_exc = linked_var(network, 'g_syn_exc', func=sum)
Exemple #8
0
    def __init__(self, filterbank, targetvar, *args, **kwds):
        self.targetvar = targetvar
        self.filterbank = filterbank
        filterbank.buffer_init()

        # update level keyword
        kwds['level'] = kwds.get('level', 0)+1
    
        # Sanitize the clock - does it have the right dt value?
        if 'clock' in kwds:
            if int(1/kwds['clock'].dt)!=int(filterbank.samplerate):
                raise ValueError('Clock should have 1/dt=samplerate')
        else:
            kwds['clock'] = Clock(dt=1/filterbank.samplerate)        
        
        buffersize = kwds.pop('buffersize', 32)
        if not isinstance(buffersize, int):
            buffersize = int(buffersize*self.samplerate)
        self.buffersize = buffersize
        self.buffer_pointer = buffersize
        self.buffer_start = -buffersize
        
        NeuronGroup.__init__(self, filterbank.nchannels, *args, **kwds)
        
        @network_operation(when='start', clock=self.clock)
        def apply_filterbank_output():
            if self.buffer_pointer>=self.buffersize:
                self.buffer_pointer = 0
                self.buffer_start += self.buffersize
                self.buffer = self.filterbank.buffer_fetch(self.buffer_start, self.buffer_start+self.buffersize)
            setattr(self, targetvar, self.buffer[self.buffer_pointer, :])
            self.buffer_pointer += 1
        
        self.contained_objects.append(apply_filterbank_output)
Exemple #9
0
 def generate_data():
     g = NeuronGroup(1, model=equations, reset=0, threshold=1)
     g.I = TimedArray(input, dt=.1*ms)
     g.tau = 25*ms
     g.R = 3e9
     SpM = SpikeMonitor(g)
     StM = StateMonitor(g, 'V', record=True)
     net = Network(g, SpM, StM)
     net.run(1*second)
     return StM.values[0], SpM.spikes
Exemple #10
0
 def build(self, traj, brian_list, network_dict):
     if not self.pre_built:
         eqs = Equations(traj.model, tau=traj.tau)
         ng = NeuronGroup(traj.N, eqs,
                          threshold=traj.threshold,
                          reset=traj.reset,
                          refractory=traj.refr)
         ng.v0 = traj.v00
         brian_list.append(ng)
         network_dict['group'] = ng
Exemple #11
0
 def generate_data():
     g = NeuronGroup(1, model=equations, reset=0, threshold=1)
     g.I = TimedArray(input, dt=.1 * ms)
     g.tau = 25 * ms
     g.R = 3e9
     SpM = SpikeMonitor(g)
     StM = StateMonitor(g, 'V', record=True)
     net = Network(g, SpM, StM)
     net.run(1 * second)
     return StM.values[0], SpM.spikes
Exemple #12
0
def test_stim_pyramidal_impact():
    simulation_clock=Clock(dt=.5*ms)
    trial_duration=1*second
    dcs_start_time=.5*second

    stim_levels=[-8,-6,-4,-2,-1,-.5,-.25,0,.25,.5,1,2,4,6,8]
    voltages = np.zeros(len(stim_levels))
    for idx,stim_level in enumerate(stim_levels):
        print('testing stim_level %.3fpA' % stim_level)
        eqs = exp_IF(default_params.C, default_params.gL, default_params.EL, default_params.VT, default_params.DeltaT)

        # AMPA conductance - recurrent input current
        eqs += exp_synapse('g_ampa_r', default_params.tau_ampa, siemens)
        eqs += Current('I_ampa_r=g_ampa_r*(E-vm): amp', E=default_params.E_ampa)

        # AMPA conductance - background input current
        eqs += exp_synapse('g_ampa_b', default_params.tau_ampa, siemens)
        eqs += Current('I_ampa_b=g_ampa_b*(E-vm): amp', E=default_params.E_ampa)

        # AMPA conductance - task input current
        eqs += exp_synapse('g_ampa_x', default_params.tau_ampa, siemens)
        eqs += Current('I_ampa_x=g_ampa_x*(E-vm): amp', E=default_params.E_ampa)

        # Voltage-dependent NMDA conductance
        eqs += biexp_synapse('g_nmda', default_params.tau1_nmda, default_params.tau2_nmda, siemens)
        eqs += Equations('g_V = 1/(1+(Mg/3.57)*exp(-0.062 *vm/mV)) : 1 ', Mg=default_params.Mg)
        eqs += Current('I_nmda=g_V*g_nmda*(E-vm): amp', E=default_params.E_nmda)

        # GABA-A conductance
        eqs += exp_synapse('g_gaba_a', default_params.tau_gaba_a, siemens)
        eqs += Current('I_gaba_a=g_gaba_a*(E-vm): amp', E=default_params.E_gaba_a)

        eqs +=InjectedCurrent('I_dcs: amp')

        group=NeuronGroup(1, model=eqs, threshold=-20*mV, refractory=pyr_params.refractory, reset=default_params.Vr,
            compile=True, freeze=True, clock=simulation_clock)
        group.C=pyr_params.C
        group.gL=pyr_params.gL

        @network_operation(clock=simulation_clock)
        def inject_current(c):
            if simulation_clock.t>dcs_start_time:
                group.I_dcs=stim_level*pA
        monitor=StateMonitor(group, 'vm', simulation_clock, record=True)
        net=Network(group, monitor, inject_current)
        net.run(trial_duration, report='text')
        voltages[idx]=monitor.values[0,-1]*1000

    voltages=voltages-voltages[7]
    plt.figure()
    plt.plot(stim_levels,voltages)
    plt.xlabel('Stimulation level (pA)')
    plt.ylabel('Voltage Change (mV)')
    plt.show()
Exemple #13
0
 def __init__(self, pyramidal_group, clock=defaultclock):
     eqs = Equations('''
      LFP : amp
     ''')
     NeuronGroup.__init__(self,
                          1,
                          model=eqs,
                          compile=True,
                          freeze=True,
                          clock=clock)
     self.LFP = linked_var(pyramidal_group, 'I_abs', func=sum)
Exemple #14
0
 def build(self, traj, brian_list, network_dict):
     if not self.pre_built:
         eqs = Equations(traj.model, tau=traj.tau)
         ng = NeuronGroup(traj.N,
                          eqs,
                          threshold=traj.threshold,
                          reset=traj.reset,
                          refractory=traj.refr)
         ng.v0 = traj.v00
         brian_list.append(ng)
         network_dict['group'] = ng
Exemple #15
0
    def __init__(self, clock, params=default_params, network=None):
        eqs = Equations('''
        G_total                                                       : siemens
        G_total_exc                                                   : siemens
        ds/dt=eta*(G_total-G_base)/G_base-s/tau_s-(f_in-1.0)/tau_f    : 1
        df_in/dt=s/second                                             : 1
        dv/dt=1/tau_o*(f_in-f_out)                                    : 1
        f_out=v**(1.0/alpha)                                          : 1
        o_e=1-(1-e_base)**(1/f_in)                                    : 1
        dq/dt=1/tau_o*((f_in*o_e/e_base)-f_out*q/v)                   : 1
        y=v_base*((k1+k2)*(1-q)-(k2+k3)*(1-v))                        : 1
        G_base                                                        : siemens
        eta                                                           : 1/second
        tau_s                                                         : second
        tau_f                                                         : second
        alpha                                                         : 1
        tau_o                                                         : second
        e_base                                                        : 1
        v_base                                                        : 1
        k1                                                            : 1
        k2                                                            : 1
        k3                                                            : 1
        ''')
        NeuronGroup.__init__(self,
                             1,
                             model=eqs,
                             clock=clock,
                             compile=True,
                             freeze=True)
        self.params = params
        self.G_base = params.G_base
        self.eta = params.eta
        self.tau_s = params.tau_s
        self.tau_f = params.tau_f
        self.alpha = params.alpha
        self.tau_o = params.tau_o
        self.e_base = params.e_base
        self.v_base = params.v_base
        self.k1 = params.k1
        self.params.s_e = params.s_e_0 * exp(-params.TE / params.T_2E)
        self.params.s_i = params.s_i_0 * exp(-params.TE / params.T_2I)
        self.params.beta = self.params.s_e / self.params.s_i
        self.k2 = self.params.beta * params.r_0 * self.e_base * params.TE
        self.k3 = self.params.beta - 1

        self.f_in = 1
        self.s = 0
        self.v = 1
        self.q = 1

        if network is not None:
            self.G_total = linked_var(network, 'g_syn', func=sum)
            self.G_total_exc = linked_var(network, 'g_syn_exc', func=sum)
Exemple #16
0
class BretteCriterion(Criterion):
    def initialize(self,tau_metric):
        self.delay_range =max(self.delays)- min(self.delays)#delay range
        self.min_delay = abs(min(self.delays))#minimum of possible delay
        self.corr_vector=zeros(self.N) 
        self.norm_pop = zeros(self.N) 
        self.norm_target = zeros(self.N) 
        self.nbr_neurons_group = self.N/self.K
        
        eqs="""
        tau:second
        dv/dt=(-v)/tau: volt
        """
        # network to convolve target spikes with the kernel
        self.input_target=SpikeGeneratorGroup(self.K,self.spikes,clock=self.group.clock)
        self.kernel_target=NeuronGroup(self.N,model=eqs,clock=self.group.clock)
        self.C_target = DelayConnection(self.input_target, self.kernel_target, 'v', structure='sparse',  max_delay=self.min_delay)  
        self.kernel_target.tau=tau_metric
        for igroup in xrange(self.K):
            self.C_target.W[igroup,igroup*self.nbr_neurons_group:(1+igroup)*self.nbr_neurons_group] = ones(self.nbr_neurons_group)
            self.C_target.delay[igroup,igroup*self.nbr_neurons_group:(1+igroup)*self.nbr_neurons_group] =  self.min_delay * ones(self.nbr_neurons_group)
            
        # network to convolve population spikes with the kernel
        self.kernel_population=NeuronGroup(self.N,model=eqs,clock=self.group.clock)
        self.C_population = DelayConnection(self.group, self.kernel_population, 'v', structure='sparse',  max_delay=self.delay_range)
        for iN in xrange(self.N):
            self.C_population.delay[iN,iN] = diagflat(self.min_delay + self.delays[iN])
        self.C_population.connect_one_to_one(self.group,self.kernel_population)
        self.kernel_population.tau=tau_metric
        self.spikecount = SpikeCounter(self.group)
        self.contained_objects = [self.kernel_population,self.C_population,self.spikecount,self.input_target,self.C_target,self.kernel_target]  

    def __call__(self):
        trace_population = self.kernel_population.state_('v')
        trace_target = self.kernel_target.state_('v')
        self.corr_vector += trace_population*trace_target
        self.norm_pop += trace_population**2
        self.norm_target += trace_target**2
        
    def get_values(self):
        return (self.corr_vector,self.norm_pop,self.norm_target)
    
    def normalize(self, values):
        corr_vector=values[0]
        norm_pop=values[1]
        norm_target=values[2]
        corr_vector[nonzero(self.spikecount.count==0)] = -inf
        #print self.corr_vector/sqrt(norm_pop)/sqrt(norm_target)
        return self.corr_vector/sqrt(norm_pop)/sqrt(norm_target)
Exemple #17
0
    def __init__(self, clock, params=default_params, network=None):
        eqs=Equations('''
        G_total                                                       : siemens
        G_total_exc                                                   : siemens
        ds/dt=eta*(G_total-G_base)/G_base-s/tau_s-(f_in-1.0)/tau_f    : 1
        df_in/dt=s/second                                             : 1
        dv/dt=1/tau_o*(f_in-f_out)                                    : 1
        f_out=v**(1.0/alpha)                                          : 1
        o_e=1-(1-e_base)**(1/f_in)                                    : 1
        dq/dt=1/tau_o*((f_in*o_e/e_base)-f_out*q/v)                   : 1
        y=v_base*((k1+k2)*(1-q)-(k2+k3)*(1-v))                        : 1
        G_base                                                        : siemens
        eta                                                           : 1/second
        tau_s                                                         : second
        tau_f                                                         : second
        alpha                                                         : 1
        tau_o                                                         : second
        e_base                                                        : 1
        v_base                                                        : 1
        k1                                                            : 1
        k2                                                            : 1
        k3                                                            : 1
        ''')
        NeuronGroup.__init__(self, 1, model=eqs, clock=clock, compile=True, freeze=True)
        self.params=params
        self.G_base=params.G_base
        self.eta=params.eta
        self.tau_s=params.tau_s
        self.tau_f=params.tau_f
        self.alpha=params.alpha
        self.tau_o=params.tau_o
        self.e_base=params.e_base
        self.v_base=params.v_base
        self.k1=params.k1
        self.params.s_e=params.s_e_0*exp(-params.TE/params.T_2E)
        self.params.s_i=params.s_i_0*exp(-params.TE/params.T_2I)
        self.params.beta=self.params.s_e/self.params.s_i
        self.k2=self.params.beta*params.r_0*self.e_base*params.TE
        self.k3=self.params.beta-1

        self.f_in=1
        self.s=0
        self.v=1
        self.q=1

        if network is not None:
            self.G_total = linked_var(network, 'g_syn', func=sum)
            self.G_total_exc = linked_var(network, 'g_syn_exc', func=sum)
Exemple #18
0
    def initialize_neurongroup(self):
        # Add 'refractory' parameter on the CPU only
        if not self.use_gpu:
            if self.max_refractory is not None:
                refractory = 'refractory'
                self.model.add_param('refractory', second)
            else:
                refractory = self.refractory
        else:
            if self.max_refractory is not None:
                refractory = 0*ms
            else:
                refractory = self.refractory
        
        # Must recompile the Equations : the functions are not transfered after pickling/unpickling
        self.model.compile_functions()
#        print refractory, self.max_refractory
        if  type(refractory) is double:
            refractory=refractory*second
#        if self.give_neuron_group == False:
        self.group = NeuronGroup(self.neurons, # TODO: * slices?
                                 model=self.model,
                                 reset=self.reset,
                                 threshold=self.threshold,
                                 refractory=refractory,
                                 max_refractory = self.max_refractory,
                                 method = self.method,
                                 clock=Clock(dt=self.dt))
        
        if self.initial_values is not None:
            for param, value in self.initial_values.iteritems():
                self.group.state(param)[:] = value
Exemple #19
0
    def initialize_neurongroup(self):
        # Add 'refractory' parameter on the CPU only
        if not self.use_gpu:
            if self.max_refractory is not None:
                refractory = "refractory"
                self.model.add_param("refractory", second)
            else:
                refractory = self.refractory
        else:
            if self.max_refractory is not None:
                refractory = 0 * ms
            else:
                refractory = self.refractory

        # Must recompile the Equations : the functions are not transfered after pickling/unpickling
        self.model.compile_functions()

        self.group = NeuronGroup(
            self.neurons,
            model=self.model,
            reset=self.reset,
            threshold=self.threshold,
            refractory=refractory,
            max_refractory=self.max_refractory,
            method=self.method,
            clock=Clock(dt=self.dt),
        )

        if self.initial_values is not None:
            for param, value in self.initial_values.iteritems():
                self.group.state(param)[:] = value
    def _build_model(self, traj, brian_list, network_dict):
        """Builds the neuron groups from `traj`.

        Adds the neuron groups to `brian_list` and `network_dict`.

        """

        model = traj.parameters.model

        # Create the equations for both models
        eqs_dict = self._build_model_eqs(traj)

        # Create inhibitory neurons
        eqs_i = eqs_dict['i']
        neurons_i = NeuronGroup(N=model.N_i,
                                model=eqs_i,
                                threshold=model.V_th,
                                reset=model.reset_func,
                                refractory=model.refractory,
                                freeze=True,
                                compile=True,
                                method='Euler')

        # Create excitatory neurons
        eqs_e = eqs_dict['e']
        neurons_e = NeuronGroup(N=model.N_e,
                                model=eqs_e,
                                threshold=model.V_th,
                                reset=model.reset_func,
                                refractory=model.refractory,
                                freeze=True,
                                compile=True,
                                method='Euler')

        # Set the bias terms
        neurons_e.mu = rand(
            model.N_e) * (model.mu_e_max - model.mu_e_min) + model.mu_e_min
        neurons_i.mu = rand(
            model.N_i) * (model.mu_i_max - model.mu_i_min) + model.mu_i_min

        # Set initial membrane potentials
        neurons_e.V = rand(model.N_e)
        neurons_i.V = rand(model.N_i)

        # Add both groups to the `brian_list` and the `network_dict`
        brian_list.append(neurons_i)
        brian_list.append(neurons_e)
        network_dict['neurons_e'] = neurons_e
        network_dict['neurons_i'] = neurons_i
Exemple #21
0
class VanRossumCriterion(Criterion):
    def initialize(self, tau):
        self.delay_range =max(self.delays)- min(self.delays)#delay range
        self.min_delay = abs(min(self.delays))#minimum of possible delay
        self.distance_vector=zeros(self.N) 
        self.nbr_neurons_group = self.N/self.K
        
        eqs="""
        dv/dt=(-v)/tau: volt
        """
        # network to convolve target spikes with the kernel
        self.input_target=SpikeGeneratorGroup(self.K,self.spikes,clock=self.group.clock)
        self.kernel_target=NeuronGroup(self.K,model=eqs,clock=self.group.clock)
        self.C_target = DelayConnection(self.input_target, self.kernel_target, 'v', structure='dense',  max_delay=self.min_delay)     
        self.C_target.connect_one_to_one(self.input_target,self.kernel_target)
        self.C_target.delay = self.min_delay*ones_like(self.C_target.delay)

        # network to convolve population spikes with the kernel
        self.kernel_population=NeuronGroup(self.N,model=eqs,clock=self.group.clock)
        self.C_population = DelayConnection(self.group, self.kernel_population, 'v', structure='sparse',  max_delay=self.delay_range)
        for iN in xrange(self.N):
            self.C_population.delay[iN,iN] = diagflat(self.min_delay + self.delays[iN])
        self.C_population.connect_one_to_one(self.group,self.kernel_population)
        self.spikecount = SpikeCounter(self.group)
        self.contained_objects = [self.kernel_population,self.C_population,self.spikecount,self.input_target,self.C_target,self.kernel_target]  

    def __call__(self):
        trace_population = self.kernel_population.state_('v')
        trace_target = self.kernel_target.state_('v')
        for igroup in xrange(self.K):
            self.distance_vector[igroup*self.nbr_neurons_group:(1+igroup)*self.nbr_neurons_group] += (trace_population[igroup*self.nbr_neurons_group:(1+igroup)*self.nbr_neurons_group]-trace_target[igroup])**2

    def get_values(self):
        return (self.distance_vector)
    
    def normalize(self, distance_vector):
        distance_vector[nonzero(self.spikecount.count==0)] = inf
        return -self.distance_vector*self.group.clock.dt
Exemple #22
0
def get_spikes(model=None, reset=None, threshold=None,
                input=None, input_var='I', dt=None,
                **params):
    """
    Retrieves the spike times corresponding to the best parameters found by
    the modelfitting function.
    
    **Arguments**
    
    ``model``, ``reset``, ``threshold``, ``input``, ``input_var``, ``dt``
        Same parameters as for the ``modelfitting`` function.
        
    ``**params``
        The best parameters returned by the ``modelfitting`` function.
    
    **Returns**
    
    ``spiketimes``
        The spike times of the model with the given input and parameters.
    """
    duration = len(input) * dt
    ngroups = len(params[params.keys()[0]])

    group = NeuronGroup(N=ngroups, model=model, reset=reset, threshold=threshold,
                        clock=Clock(dt=dt))
    group.set_var_by_array(input_var, TimedArray(input, clock=group.clock))
    for param, values in params.iteritems():
        if (param == 'delays') | (param == 'fitness'):
            continue
        group.state(param)[:] = values

    M = SpikeMonitor(group)
    net = Network(group, M)
    net.run(duration)
    reinit_default_clock()
    return M.spikes
def fun(sigma, args):
    """
    This function computes the mean firing rate of a LIF neuron with
    white noise input current (OU process with threshold).
    """
    if not isscalar(sigma):
        raise Exception('sigma must be a scalar')
    N = args['N']
    tau = args['tau']
    model = args['model']
    reset = args['reset']
    threshold = args['threshold']
    duration = args['duration']
    G = NeuronGroup(N, model=model, reset=reset, threshold=threshold)
    M = SpikeCounter(G)
    net = Network(G, M)
    net.run(duration)
    r = M.nspikes * 1.0 / N
    return r
Exemple #24
0
    def _build_model(self, traj, brian_list, network_dict):
        """Builds the neuron groups from `traj`.

        Adds the neuron groups to `brian_list` and `network_dict`.

        """
        assert(isinstance(traj,SingleRun))

        model = traj.parameters.model

        # Create the equations for both models
        eqs_dict = self._build_model_eqs(traj)

        # Create inhibitory neurons
        eqs_i = eqs_dict['i']
        neurons_i = NeuronGroup(N=model.N_i,
                              model = eqs_i,
                              threshold=model.V_th,
                              reset=model.reset_func,
                              refractory=model.refractory,
                              freeze=True,
                              compile=True,
                              method='Euler')

        # Create excitatory neurons
        eqs_e = eqs_dict['e']
        neurons_e = NeuronGroup(N=model.N_e,
                              model = eqs_e,
                              threshold=model.V_th,
                              reset=model.reset_func,
                              refractory=model.refractory,
                              freeze=True,
                              compile=True,
                              method='Euler')


        # Set the bias terms
        neurons_e.mu =rand(model.N_e) * (model.mu_e_max - model.mu_e_min) + model.mu_e_min
        neurons_i.mu =rand(model.N_i) * (model.mu_i_max - model.mu_i_min) + model.mu_i_min

        # Set initial membrane potentials
        neurons_e.V = rand(model.N_e)
        neurons_i.V = rand(model.N_i)

        # Add both groups to the `brian_list` and the `network_dict`
        brian_list.append(neurons_i)
        brian_list.append(neurons_e)
        network_dict['neurons_e']=neurons_e
        network_dict['neurons_i']=neurons_i
Exemple #25
0
    def __init__(self, clock, params=zheng_params, network=None):
        eqs = Equations(
            '''
        G_total                                                       : siemens
        G_total_exc                                                   : siemens
        ds/dt=eta*(G_total-G_base)/G_base-s/tau_s-(f_in-1.0)/tau_f    : 1
        df_in/dt=s/second                                             : 1.0
        dv/dt=1/tau_o*(f_in-f_out)                                    : 1
        f_out=v**(1.0/alpha)                                          : 1
        do_e/dt=1.0/(phi/f_in)*(-o_e+(1.0-g)*(1.0-(1.0-e_base/(1.0-g_0))**(1.0/f_in))) : %.4f
        dcb/dt=1.0/(phi/f_in)*(-cb-(c_ab*o_e)/oe_log+c_ab*g)  : 1
        oe_log                            : 1
        cmr_o=(cb-g*c_ab)/(cb_0-g_0*c_ab) : 1
        dg/dt=1.0/(j*v_ratio*((r*transitTime)/e_base))*((cmr_o-1.0)-k*s)  : %.4f
        dq/dt=1/tau_o*((f_in*o_e/e_base)-f_out*q/v)                   : 1
        y=v_0*((k1+k2)*(1-q)-(k2+k3)*(1-v))                        : 1
        G_base                                                        : siemens
        eta                                                           : 1/second
        tau_s                                                         : second
        tau_f                                                         : second
        alpha                                                         : 1
        tau_o                                                         : second
        v_0                                                           : 1
        k1                                                            : 1
        k2                                                            : 1
        k3                                                            : 1
        phi                                                           : %.4f*second
        e_base                                                        : %.4f
        g_0                                                           : %.4f
        c_ab                                                          : 1
        cb_0                                                          : 1
        v_ratio                                                       : 1
        j                                                             : 1
        transitTime                                                   : second
        k                                                             : 1
        r                                                             : 1
        ''' %
            (params.e_base, params.g_0, params.phi, params.e_base, params.g_0))
        NeuronGroup.__init__(self,
                             1,
                             model=eqs,
                             clock=clock,
                             compile=True,
                             freeze=True)

        self.params = params
        self.G_base = params.G_base
        self.eta = params.eta
        self.tau_s = params.tau_s
        self.tau_f = params.tau_f
        self.alpha = params.alpha
        self.tau_o = params.tau_o
        self.e_base = params.e_base
        self.v_0 = params.v_0
        self.k1 = params.k1
        self.params.s_e = params.s_e_0 * exp(-params.TE / params.T_2E)
        self.params.s_i = params.s_i_0 * exp(-params.TE / params.T_2I)
        self.params.beta = self.params.s_e / self.params.s_i
        self.k2 = self.params.beta * params.r_0 * self.e_base * params.TE
        self.k3 = self.params.beta - 1.0
        self.c_ab = self.params.c_ab
        self.cb_0 = self.params.cb_0
        self.g_0 = self.params.g_0
        self.phi = self.params.phi
        self.v_ratio = self.params.v_ratio
        self.j = self.params.j
        self.transitTime = self.params.transitTime
        self.k = self.params.k
        self.r = self.params.r

        self.f_in = 1.0
        self.s = 0.0
        self.v = 1.0
        self.o_e = self.e_base
        self.cb = self.cb_0
        self.g = self.g_0
        self.oe_log = np.log(1.0 - self.o_e / (1.0 - self.g))

        self.q = 1.0

        if network is not None:
            self.G_total = linked_var(network, 'g_syn', func=sum)
            self.G_total_exc = linked_var(network, 'g_syn_exc', func=sum)
Exemple #26
0
 def __init__(self, pyramidal_group, clock=defaultclock):
     eqs=Equations('''
      LFP : amp
     ''')
     NeuronGroup.__init__(self, 1, model=eqs, compile=True, freeze=True, clock=clock)
     self.LFP=linked_var(pyramidal_group, 'I_abs', func=sum)
Exemple #27
0
    def __init__(self,
                 lip_size,
                 params,
                 background_inputs=None,
                 visual_cortex_input=None,
                 go_input=None):
        self.lip_size = lip_size
        self.N = 2 * self.lip_size

        self.params = params
        self.background_inputs = background_inputs
        self.visual_cortex_input = visual_cortex_input
        self.go_input = go_input

        ## Set up equations

        # Exponential integrate-and-fire neuron
        eqs = exp_IF(params.C, params.gL, params.EL, params.VT, params.DeltaT)

        # AMPA conductance - recurrent input current
        eqs += exp_synapse('g_ampa_r', params.tau_ampa, siemens)
        eqs += Current('I_ampa_r=g_ampa_r*(E-vm): amp', E=params.E_ampa)

        # AMPA conductance - background input current
        eqs += exp_synapse('g_ampa_b', params.tau_ampa, siemens)
        eqs += Current('I_ampa_b=g_ampa_b*(E-vm): amp', E=params.E_ampa)

        # AMPA conductance - task input current
        eqs += exp_synapse('g_ampa_x', params.tau_ampa, siemens)
        eqs += Current('I_ampa_x=g_ampa_x*(E-vm): amp', E=params.E_ampa)

        # AMPA conductance - go input current
        eqs += exp_synapse('g_ampa_g', params.tau_ampa, siemens)
        eqs += Current('I_ampa_g=g_ampa_g*(E-vm): amp', E=params.E_ampa)

        # Voltage-dependent NMDA conductance
        eqs += biexp_synapse('g_nmda', params.tau1_nmda, params.tau2_nmda,
                             siemens)
        eqs += Equations('g_V = 1/(1+(Mg/3.57)*exp(-0.062 *vm/mV)) : 1 ',
                         Mg=params.Mg)
        eqs += Current('I_nmda=g_V*g_nmda*(E-vm): amp', E=params.E_nmda)

        # GABA-A conductance
        eqs += exp_synapse('g_gaba_a', params.tau_gaba_a, siemens)
        eqs += Current('I_gaba_a=g_gaba_a*(E-vm): amp', E=params.E_gaba_a)

        # GABA-B conductance
        eqs += biexp_synapse('g_gaba_b', params.tau1_gaba_b,
                             params.tau2_gaba_b, siemens)
        eqs += Current('I_gaba_b=g_gaba_b*(E-vm): amp', E=params.E_gaba_b)

        # Total synaptic conductance
        eqs += Equations(
            'g_syn=g_ampa_r+g_ampa_x+g_ampa_g+g_ampa_b+g_V*g_nmda+g_gaba_a+g_gaba_b : siemens'
        )
        eqs += Equations(
            'g_syn_exc=g_ampa_r+g_ampa_x+g_ampa_g+g_ampa_b+g_V*g_nmda : siemens'
        )
        # Total synaptic current
        eqs += Equations(
            'I_abs=abs(I_ampa_r)+abs(I_ampa_b)+abs(I_ampa_x)+abs(I_ampa_g)+abs(I_nmda)+abs(I_gaba_a) : amp'
        )

        NeuronGroup.__init__(self,
                             self.N,
                             model=eqs,
                             threshold=-20 * mV,
                             reset=params.EL,
                             compile=True)

        self.init_subpopulations()

        self.connections = []

        self.init_connectivity()

        if self.background_inputs is not None:
            # Background -> E+I population connections
            background_left_ampa = init_connection(self.background_inputs[0],
                                                   self.left_lip.neuron_group,
                                                   'g_ampa_b',
                                                   self.params.w_ampa_min,
                                                   self.params.w_ampa_max,
                                                   self.params.p_b_e,
                                                   delay=5 * ms)
            background_right_ampa = init_connection(
                self.background_inputs[1],
                self.right_lip.neuron_group,
                'g_ampa_b',
                self.params.w_ampa_min,
                self.params.w_ampa_max,
                self.params.p_b_e,
                delay=5 * ms)
            self.connections.append(background_left_ampa)
            self.connections.append(background_right_ampa)

        if self.visual_cortex_input is not None:
            # Task input -> E population connections
            vc_left_lip_ampa = init_connection(self.visual_cortex_input[0],
                                               self.left_lip.e_contra_vis,
                                               'g_ampa_x',
                                               self.params.w_ampa_min,
                                               self.params.w_ampa_max,
                                               self.params.p_v_ec_vis,
                                               delay=270 * ms)
            vc_right_lip_ampa = init_connection(self.visual_cortex_input[1],
                                                self.right_lip.e_contra_vis,
                                                'g_ampa_x',
                                                self.params.w_ampa_min,
                                                self.params.w_ampa_max,
                                                self.params.p_v_ec_vis,
                                                delay=270 * ms)
            self.connections.append(vc_left_lip_ampa)
            self.connections.append(vc_right_lip_ampa)

        if self.go_input is not None:
            go_left_lip_i_ampa = init_connection(self.go_input,
                                                 self.left_lip.i_group,
                                                 'g_ampa_g',
                                                 self.params.w_ampa_min,
                                                 self.params.w_ampa_max,
                                                 self.params.p_g_i,
                                                 delay=5 * ms)
            go_right_lip_i_ampa = init_connection(self.go_input,
                                                  self.right_lip.i_group,
                                                  'g_ampa_g',
                                                  self.params.w_ampa_min,
                                                  self.params.w_ampa_max,
                                                  self.params.p_g_i,
                                                  delay=5 * ms)
            go_left_lip_e_ampa = init_connection(self.go_input,
                                                 self.left_lip.e_group,
                                                 'g_ampa_g',
                                                 self.params.w_ampa_min,
                                                 self.params.w_ampa_max,
                                                 self.params.p_g_e,
                                                 delay=5 * ms)
            go_right_lip_e_ampa = init_connection(self.go_input,
                                                  self.right_lip.e_group,
                                                  'g_ampa_g',
                                                  self.params.w_ampa_min,
                                                  self.params.w_ampa_max,
                                                  self.params.p_g_e,
                                                  delay=5 * ms)
            self.connections.append(go_left_lip_i_ampa)
            self.connections.append(go_right_lip_i_ampa)
            self.connections.append(go_left_lip_e_ampa)
            self.connections.append(go_right_lip_e_ampa)
def hodgkin_huxley(duration=100, num=10, percent_excited=0.7, sample=1):
    """
    The hodgkin_huxley function takes the following parameters:

      duration - is the timeperiod to model for measured in milliseconds.
      num - an integer value represeting the number of neurons you want to model.
      percent_excited - a float between 0 and 1 representing the percentage of excited neurons.
      sample - gives the number of random neurons you would like plotted (default is 1)
    """
    # Assert that we are getting valid input
    assert(percent_excited >= 0 and percent_excited <= 1.0)
    assert(duration > 0)
    assert(num > 0)
    assert(sample > 0)
    assert(num >= sample)

    # Constants used in the modeling equation
    area = 20000*umetre**2
    Cm = (1*ufarad*cm**-2)*area
    gl = (5e-5*siemens*cm**-2)*area
    El = -60*mV
    EK = -90*mV
    ENa = 50*mV
    g_na = (100*msiemens*cm**-2)*area
    g_kd = (30*msiemens*cm**-2)*area
    VT = -63*mV

    # Time constants
    taue = 5*ms       # excitatory
    taui = 10*ms      # inhibitory
    
    # Reversal potentials
    Ee = 0*mV         # excitatory
    Ei = -80*mV       # inhibitory
    
    # Synaptic weights
    we = 6*nS         # excitatory
    wi = 67*nS        # inhibitory

    # The model equations
    eqs = Equations(
        '''
        dv/dt = (gl*(El-v)+ge*(Ee-v)+gi*(Ei-v)-g_na*(m*m*m)*h*(v-ENa)-g_kd*(n*n*n*n)*(v-EK))/Cm : volt
        dm/dt = alpham*(1-m)-betam*m : 1
        dn/dt = alphan*(1-n)-betan*n : 1
        dh/dt = alphah*(1-h)-betah*h : 1
        dge/dt = -ge*(1./taue) : siemens
        dgi/dt = -gi*(1./taui) : siemens
        alpham = 0.32*(mV**-1)*(13*mV-v+VT)/(exp((13*mV-v+VT)/(4*mV))-1.)/ms : Hz
        betam = 0.28*(mV**-1)*(v-VT-40*mV)/(exp((v-VT-40*mV)/(5*mV))-1)/ms : Hz
        alphah = 0.128*exp((17*mV-v+VT)/(18*mV))/ms : Hz
        betah = 4./(1+exp((40*mV-v+VT)/(5*mV)))/ms : Hz
        alphan = 0.032*(mV**-1)*(15*mV-v+VT)/(exp((15*mV-v+VT)/(5*mV))-1.)/ms : Hz
        betan = .5*exp((10*mV-v+VT)/(40*mV))/ms : Hz
        '''
    )

    # Build the neuron group
    neurons = NeuronGroup(
        num,
        model=eqs,
        threshold=EmpiricalThreshold(threshold=-20*mV,refractory=3*ms),
        implicit=True,
        freeze=True
    )

    num_excited = int(num * percent_excited)
    num_inhibited = num - num_excited
    excited = neurons.subgroup(num_excited)
    inhibited = neurons.subgroup(num_inhibited)
    excited_conn = Connection(excited, neurons, 'ge', weight=we, sparseness=0.02)
    inhibited_conn = Connection(inhibited, neurons, 'gi', weight=wi, sparseness=0.02)
    
    # Initialization
    neurons.v = El+(randn(num)*5-5)*mV
    neurons.ge = (randn(num)*1.5+4)*10.*nS
    neurons.gi = (randn(num)*12+20)*10.*nS
    
    # Record a few trace and run
    recorded = choice(num, sample)
    trace = StateMonitor(neurons, 'v', record=recorded)
    run(duration * msecond)

    for i in recorded:
        plot(trace.times/ms, trace[i]/mV)
        
    show()
from matplotlib.patches import Rectangle
import spikerlib as sl
import numpy as np
import sys


sim = Network()
duration = 200*ms
dt = 0.1*ms
tau = 10*ms
Vth = 15*mV
Vreset = 0*mV
Vreset = 13.65*mV
lifeq = "dV/dt = -V/tau : volt"

lifnrn = NeuronGroup(1, lifeq, threshold="V>=Vth", reset=Vreset)
lifnrn.V = Vreset
sim.add(lifnrn)

Nin = 200
fin = 80*Hz
Sin = 0.6
sigma = 0.0*ms
weight = 0.1*mV
inputs = sl.tools.fast_synchronous_input_gen(Nin, fin, Sin, sigma, duration)
connection = Connection(inputs, lifnrn, "V", weight=weight)
sim.add(inputs, connection)

vmon = StateMonitor(lifnrn, "V", record=True)
spikemon = SpikeMonitor(lifnrn)
sim.add(vmon, spikemon)
def runsim(neuron_model, 
           # sim params
           dt, simtime, prerun, monitors, recvars,
           # stimulation params
           fstim, r0_bg, r0_stim, stim_starts, stim_stops, stim_odors, stim_amps, stim_start_var,
           # network params
           beeid, N_glu, N_KC, ORNperGlu, PNperKC, PN_I0, LN_I0,
           # network weights
           wi, wORNLN, wORNPN, wPNKC,
           # default params
           V0min, inh_struct=None, Winh=None, timestep=500, report=None):

    np.random.seed() #needed for numpy/brian when runing parallel sims
    define_default_clock(dt=dt)    
    
    inh_on_off = 0 if (wi == 0) or (wi is None) or (wORNLN is None) else 1    
    
    
    
    #########################     NEURONGROUPS     #########################
    NG = dict()

    # ORN Input
    
    # For each glumerolus, random temporal response jitter can be added.
    # The jitter is added to the response onset. Maximum jitter is given by stim_start_var.
    # stim_start_jittered is a vector containing the jittered stim start tims
    
    # orn_activation returns a booolean vector of stim presence given time t
    
    # Total ORN rate: Baseline componenent equal for all units,
    # and individual activationa.
    
    jitter = np.random.uniform(0,stim_start_var,N_glu)
    
    stim_tun       = lambda odorN: fstim(N_glu=N_glu, odorN=odorN) * r0_stim
    orn_activation = lambda t: np.sum([
                     a*stim_tun(odorN=o)*np.logical_and(np.greater(t,prerun+stim_start+jitter), np.less(t,prerun+stim_stop))
                     for stim_start,stim_stop,o,a in zip(stim_starts, stim_stops, stim_odors, stim_amps)], 0)                         
    orn_rates      = lambda t: np.repeat(r0_bg + orn_activation(t),repeats = ORNperGlu)
    
    NG['ORN'] = PoissonGroup(ORNperGlu*N_glu, rates=orn_rates)
    NG['PN'] = NeuronGroup(N_glu, **neuron_model)
    NG['LN'] = NeuronGroup(N_glu*inh_on_off, **neuron_model)
    if 'KC' in monitors: NG['KC'] = NeuronGroup(N_KC, **neuron_model)

    #########################     CONNECTIONS       #########################
    c = dict()
    
    c['ORNPN'] = Connection(NG['ORN'],NG['PN'],'ge')
    
    for i in np.arange(N_glu): c['ORNPN'].connect_full(NG['ORN'].subgroup(ORNperGlu),NG['PN'][i],weight=wORNPN)

    if inh_on_off:
        print('-- inhibiting --',wi)
        
        c['ORNLN'] = Connection(NG['ORN'],NG['LN'],'ge')
        c['LNPN'] = Connection(NG['LN'],NG['PN'],'gi',weight=(wi*35)/N_glu)
        
        for i in np.arange(N_glu):
            c['ORNLN'].connect_full(NG['ORN'][ i*ORNperGlu : (i+1)*ORNperGlu ],
                                NG['LN'][i],
                                weight = wORNLN)
        if inh_struct: c['LNPN'].connect(NG['LN'],NG['PN'],Winh)
    
    if 'KC' in monitors:
        c['KC'] = Connection(NG['PN'],NG['KC'],'ge')
        c['KC'].connect_random(NG['PN'],NG['KC'],p=PNperKC/float(N_glu),weight=wPNKC,seed=beeid)
    
    #########################     INITIAL VALUES     #########################
    VT = neuron_model['threshold']
    
    NG['PN'].vm    = np.random.uniform(V0min,VT,size=len(NG['PN']))
    if inh_on_off:
        NG['LN'].vm= np.random.uniform(V0min,VT,size=len(NG['LN']))
    if 'KC' in monitors:
        NG['KC'].vm= np.random.uniform(V0min,VT,size=len(NG['KC']))
    
    net = Network(NG.values(), c.values())
    
    #### Compensation currents ###
    NG['PN'].I0 = PN_I0
    NG['LN'].I0 = LN_I0
    ##########################################################################

    #########################         PRE-RUN        #########################    
    net.run(prerun)
    #########################     MONITORS     #########################
    spmons = [SpikeMonitor(NG[mon], record=True) for mon in monitors]
    net.add(spmons)
    
    if len(recvars) > 0:
        mons = [MultiStateMonitor(NG[mon], vars=recvars, record=True, timestep=timestep) for mon in monitors]
        net.add(mons)
    else:
        mons = None
    #########################           RUN          #########################
    net = run(simtime, report=report)
    

    out_spikes = dict( (monitors[i],np.array(sm.spikes)) for i,sm in enumerate(spmons) )
    
    if mons is not None:
        out_mons = dict( (mon,dict((var,statemon.values) for var,statemon in m.iteritems())) for mon,m in zip(monitors,mons))
    else:
        out_mons = None

    #subtract the prerun from spike times, if there are any
    for spikes in out_spikes.itervalues():
        if len(spikes) != 0:
            spikes[:,1] -= prerun
    
    return out_spikes, out_mons
Exemple #31
0
from brian import (NeuronGroup, Network, StateMonitor,
                   second, ms, volt, mV)
import numpy as np
import matplotlib.pyplot as plt

network = Network()
XT = -50*mV
DeltaT = 0.05*mV/ms
eqs = "dX/dt = DeltaT*exp((X-XT)/DeltaT) : volt"

neuron = NeuronGroup(1, eqs, threshold="X>=XT", reset=-65*mV)
neuron.X = -65*mV
network.add(neuron)

vmon = StateMonitor(neuron, "X", record=True)
network.add(vmon)

network.run(1*second)

plt.figure("Voltage")
plt.plot(vmon.times, vmon[0])
plt.show()
betah=1./(exp(-0.1/mV*(V+28*mV))+1)/ms : Hz

dn/dt=5*(alphan*(1-n)-betan*n) : 1

alphan=-0.01/mV*(V+34*mV)/(exp(-0.1/mV*(V+34*mV))-1)/ms : Hz

betan=0.125*exp(-(V+44*mV)/(80*mV))/ms : Hz

dgExc/dt = -gExc*(1./taue) : siemens

dgInh/dt = -gInh*(1./taui) : siemens

Iapp : amp

'''
neuron = NeuronGroup(1, eqs, threshold=threshold, method='RK')

neuron.V = -70*mV

# delays
B1, A1, A2, A3 = 5*ms, 20*ms, 30*ms, 40*ms
target_delay = A2-B1  # delay to be learned by neuron

spikes_A = [(0, 10*ms), (0, 115*ms), (0, 300*ms), (0, 450*ms)]
spikes_B = [(1, 10*ms), (1, 130*ms), (1, 335*ms), (1, 475*ms)]
inputs = SpikeGeneratorGroup(2, spikes_A+spikes_B)
synapse_A = Synapses(inputs[0], neuron,
                     model="w : siemens", pre="gExc_post += w")
synapse_A[:,:] = 3
synapse_A.w = WExc
synapse_A.delay[0] = A1
from brian import log_level_debug
log_level_debug()

set_global_preferences(useweave=True,usecodegen=True,usecodegenweave=True,usenewpropagate=True,usecstdp=True)

from matplotlib.pyplot import plot, show, subplot

params = {}
params["t_Nr"] = 2*ms
params["t_Nf"] = 80*ms
params["t_AMPA"] = 5*ms


simclock = Clock(dt=0.01*ms)

input=NeuronGroup(2,model='dv/dt=1/(10*ms):1', threshold=1, reset=0,clock=simclock)
neurons = NeuronGroup(1, model="""dv/dt=(NMDAo+AMPAo-v)/(10*ms) : 1
                                  NMDAo : 1
                                  AMPAo : 1""", freeze = True,clock=simclock)

ampadyn = '''
        dAMPAoS/dt = -AMPAoS/t_AMPA            : 1
        AMPAi = AMPAoS
        AMPAo = AMPAoS / (t_AMPA /msecond)     : 1
        '''

nmdadyn = '''
        dNMDAoS/dt = (1/t_Nr)*(Nnor*NMDAi-NMDAoS)                                         : 1
        dNMDAi/dt = -(1/t_Nf)*NMDAi                                                       : 1 
        Nnor = (t_Nf/t_Nr)**((t_Nr)/(t_Nf - t_Nr))                                        : 1
        Nscal = (t_Nf/msecond)**(t_Nf/(t_Nf - t_Nr))/(t_Nr/msecond)**(t_Nr/(t_Nf - t_Nr)) : 1
Exemple #34
0
def run_simulation(realizations=1, trials=1, t=3000 * ms, alpha=1, ree=1,
                   k=50, winlen = 50 * ms, verbose=True, t_stim = 0):
    """
    Run the whole simulation with the specified parameters. All model parameter are set in the function.

    Keyword arguments:
    :param realizations: number of repititions of the whole simulation, number of network instances
    :param trials: number of trials for network instance
    :param t: simulation time
    :param alpha: scaling factor for number of neurons in the network
    :param ree: clustering coefficient
    :param k: number of clusters
    :param t_stim : duration of stimulation of a subset of clusters
    :param winlen: length of window in ms
    :param verbose: plotting flag
    :return: numpy matrices with spike times
    """

    # The equations defining our neuron model
    eqs_string = '''
                dV/dt = (mu - V)/tau + x: volt
                dx/dt = -1.0/tau_2*(x - y/tau_1) : volt/second
                dy/dt = -y/tau_1 : volt
                mu : volt
                tau: second
                tau_2: second
                tau_1: second
                '''
    # Model parameters
    n_e = int(4000 * alpha)  # number of exc neurons
    n_i = int(1000 * alpha)  # number of inh neurons
    tau_e = 15 * ms  # membrane time constant (for excitatory synapses)
    tau_i = 10 * ms  # membrane time constant (for inhibitory synapses)
    tau_syn_2_e = 3 * ms  # exc synaptic time constant tau2 in paper
    tau_syn_2_i = 2 * ms  # inh synaptic time constant tau2 in paper
    tau_syn_1 = 1 * ms  # exc/inh synaptic time constant tau1 in paper
    vt = -50 * mV  # firing threshold
    vr = -65 * mV  # reset potential
    dv = vt - vr # delta v
    refrac = 5 * ms  # absolute refractory period

    # scale the weights to ensure same variance in the inputs
    wee = 0.024 * dv * np.sqrt(1. / alpha)
    wie = 0.014 * dv * np.sqrt(1. / alpha)
    wii = -0.057 * dv * np.sqrt(1. / alpha)
    wei = -0.045 * dv * np.sqrt(1. / alpha)

    # Connection probability
    p_ee = 0.2
    p_ii = 0.5
    p_ie = 0.5
    p_ei = 0.5
    
    # determine probs for inside and outside of clusters
    p_in, p_out = get_cluster_connection_probs(ree, k, p_ee)

    mu_min_e, mu_max_e = 1.1, 1.2
    mu_min_i, mu_max_i = 1.0, 1.05

    # increase cluster weights if there are clusters
    wee_cluster = wee if p_in == p_out else 1.9 * wee

    # define numpy array for data storing
    all_data = np.zeros((realizations, trials, n_e+n_i, int(t/winlen)//2))

    for realization in range(realizations):
        # clear workspace to make sure that is a new realization of the network
        clear(True, True)
        reinit()

        # set up new random bias parameter for every type of neuron
        mu_e = vr + np.random.uniform(mu_min_e, mu_max_e, n_e) * dv  # bias for excitatory neurons
        mu_i = vr + np.random.uniform(mu_min_i, mu_max_i, n_i) * dv  # bias for excitatory neurons

        # Let's create an equation object from our string and parameters
        model_eqs = Equations(eqs_string)

        # Let's create 5000 neurons
        all_neurons = NeuronGroup(N=n_e + n_i,
                                  model=model_eqs,
                                  threshold=vt,
                                  reset=vr,
                                  refractory=refrac,
                                  freeze=True,
                                  method='Euler',
                                  compile=True)

        # Divide the neurons into excitatory and inhibitory ones
        neurons_e = all_neurons[0:n_e]
        neurons_i = all_neurons[n_e:n_e + n_i]

        # set the bias
        neurons_e.mu = mu_e
        neurons_i.mu = mu_i
        neurons_e.tau = tau_e
        neurons_i.tau = tau_i
        neurons_e.tau_2 = tau_syn_2_e
        neurons_i.tau_2 = tau_syn_2_i
        all_neurons.tau_1 = tau_syn_1

        # set up connections
        connections = Connection(all_neurons, all_neurons, 'y')

        # do the cluster connection like cross validation: cluster neuron := test idx; other neurons := train idx
        kf = KFold(n=n_e, n_folds=k)
        for idx_out, idx_in in kf:  # idx_out holds all other neurons; idx_in holds all cluster neurons
            # connect current cluster to itself
            connections.connect_random(all_neurons[idx_in[0]:idx_in[-1]], all_neurons[idx_in[0]:idx_in[-1]],
                                       sparseness=p_in, weight=wee_cluster)
            # connect current cluster to other neurons
            connections.connect_random(all_neurons[idx_in[0]:idx_in[-1]], all_neurons[idx_out[0]:idx_out[-1]],
                                       sparseness=p_out, weight=wee)

        # connect all excitatory to all inhibitory, irrespective of clustering
        connections.connect_random(all_neurons[0:n_e], all_neurons[n_e:(n_e + n_i)], sparseness=p_ie, weight=wie)
        # connect all inhibitory to all excitatory
        connections.connect_random(all_neurons[n_e:(n_e + n_i)], all_neurons[0:n_e], sparseness=p_ei, weight=wei)
        # connect all inhibitory to all inhibitory
        connections.connect_random(all_neurons[n_e:(n_e + n_i)], all_neurons[n_e:(n_e + n_i)], sparseness=p_ii,
                                   weight=wii)

        # set up spike monitors
        spike_mon_e = SpikeMonitor(neurons_e)
        spike_mon_i = SpikeMonitor(neurons_i)
        # set up network with monitors
        network = Network(all_neurons, connections, spike_mon_e, spike_mon_i)

        # run this network for some number of trials, every time with
        for trial in range(trials):
            # different initial values
            all_neurons.V = vr + (vt - vr) * np.random.rand(len(all_neurons)) * 1.4

            # Calibration phase
            # run for the first half of the time to let the neurons adapt
            network.run(t/2)

            # reset monitors to start recording phase
            spike_mon_i.reinit()
            spike_mon_e.reinit()

            # stimulation if duration is given
            # define index variable for the stimulation possibility (is 0 for stimulation time=0)
            t_stim_idx = int(t_stim / (winlen/ms))
            if not(t_stim==0):
                # Stimulation phase, increase input to subset of clusters
                all_neurons[:400].mu += 0.07 * dv
                network.run(t_stim * ms, report='text')
                # set back to normal
                all_neurons[:400].mu -= 0.07 * dv
                # save data
                all_data[realization, trial, :n_e, :t_stim_idx] = spikes_counter(spike_mon_e, winlen)
                all_data[realization, trial, n_e:, :t_stim_idx] = spikes_counter(spike_mon_i, winlen)
                # reset monitors
                spike_mon_e.reinit()
                spike_mon_i.reinit()
            # run the remaining time of the simulation
            network.run((t/2) - t_stim*ms, report='text')

            # save results
            all_data[realization, trial, :n_e, t_stim_idx:] = spikes_counter(spike_mon_e, winlen)
            all_data[realization, trial, n_e:, t_stim_idx:] = spikes_counter(spike_mon_i, winlen)

            if verbose:
                plt.ion()
                plt.figure()
                raster_plot(spike_mon_e)
                plt.title('Excitatory neurons')

            spike_mon_e.reinit()
            spike_mon_i.reinit()

    return all_data
Exemple #35
0
 def reinit(self):
     NeuronGroup.reinit(self)
     self.filterbank.buffer_init()
     self.buffer_pointer = self.buffersize
     self.buffer_start = -self.buffersize
def runsim(fin):
    clear(True)
    gc.collect()
    defaultclock.reinit()
    weight = 0.16*mV
    sim = Network()
    duration = 2.0*second
    Vth = 15*mV
    Vreset = 13.65*mV
    trefr = 2*ms
    lifeq = """
    dV/dt = -V/(10*ms) : volt
    Vth : volt
    """
    nrndef = {"model": lifeq, "threshold": "V>=Vth", "reset": "V=Vreset",
              "refractory": 0.1*ms}
    inputgroups = []
    connections = []
    neurons = []
    Nneurons = len(fin)
    neurons = NeuronGroup(Nneurons, **nrndef)
    neurons.V = 0*mV
    neurons.Vth = 15*mV
    for idx in range(Nneurons):
        fin_i = fin[idx]*Hz
        inputgrp = PoissonGroup(50, fin_i)
        conn = Connection(inputgrp, neurons[idx], state="V", weight=weight)
        inputgroups.append(inputgrp)
        connections.append(conn)
    voltagemon = StateMonitor(neurons, "V", record=True)
    spikemon = SpikeMonitor(neurons, record=True)
    sim.add(neurons, voltagemon, spikemon)
    sim.add(*inputgroups)
    sim.add(*connections)

    @network_operation
    def refractory_threshold(clock):
        for idx in range(Nneurons):
            if (len(spikemon.spiketimes[idx])
                    and clock.t < spikemon.spiketimes[idx][-1]*second+trefr):
                neurons.Vth[idx] = 100*mV
            else:
                neurons.Vth[idx] = Vth

    sim.add(refractory_threshold)
    print("Running simulation of {} neurons for {} s".format(Nneurons, duration))
    sim.run(duration, report="stdout")
    mnpss = []
    allnpss = []
    outisi = []
    for idx in range(Nneurons):
        vmon = voltagemon[idx]
        smon = spikemon[idx]
        if not len(smon):
            continue
        outisi.append(duration*1000/len(smon))
        if len(smon) > 0:
            npss = sl.tools.npss(vmon, smon, 0*mV, 15*mV, 10*ms, 2*ms)
        else:
            npss = 0
        mnpss.append(np.mean(npss))
        allnpss.append(npss)
    return outisi, mnpss
def run_simulation(realizations=1, trials=1, t=3000 * ms, alpha=1, ree=1, k=50, winlen=50 * ms, verbose=True, t_stim=0):
    """
    Run the whole simulation with the specified parameters. All model parameter are set in the function.

    Keyword arguments:
    :param realizations: number of repititions of the whole simulation, number of network instances
    :param trials: number of trials for network instance
    :param t: simulation time
    :param alpha: scaling factor for number of neurons in the network
    :param ree: clustering coefficient
    :param k: number of clusters
    :param t_stim : duration of stimulation of a subset of clusters
    :param winlen: length of window in ms
    :param verbose: plotting flag
    :return: numpy matrices with spike times
    """

    # The equations defining our neuron model
    eqs_string = """
                dV/dt = (mu - V)/tau + x: volt
                dx/dt = -1.0/tau_2*(x - y/tau_1) : volt/second
                dy/dt = -y/tau_1 : volt
                mu : volt
                tau: second
                tau_2: second
                tau_1: second
                """
    # Model parameters
    n_e = int(4000 * alpha)  # number of exc neurons
    n_i = int(1000 * alpha)  # number of inh neurons
    tau_e = 15 * ms  # membrane time constant (for excitatory synapses)
    tau_i = 10 * ms  # membrane time constant (for inhibitory synapses)
    tau_syn_2_e = 3 * ms  # exc synaptic time constant tau2 in paper
    tau_syn_2_i = 2 * ms  # inh synaptic time constant tau2 in paper
    tau_syn_1 = 1 * ms  # exc/inh synaptic time constant tau1 in paper
    vt = -50 * mV  # firing threshold
    vr = -65 * mV  # reset potential
    dv = vt - vr  # delta v
    refrac = 5 * ms  # absolute refractory period

    # scale the weights to ensure same variance in the inputs
    wee = 0.024 * dv * np.sqrt(1.0 / alpha)
    wie = 0.014 * dv * np.sqrt(1.0 / alpha)
    wii = -0.057 * dv * np.sqrt(1.0 / alpha)
    wei = -0.045 * dv * np.sqrt(1.0 / alpha)

    # Connection probability
    p_ee = 0.2
    p_ii = 0.5
    p_ie = 0.5
    p_ei = 0.5

    # determine probs for inside and outside of clusters
    p_in, p_out = get_cluster_connection_probs(ree, k, p_ee)

    mu_min_e, mu_max_e = 1.1, 1.2
    mu_min_i, mu_max_i = 1.0, 1.05

    # increase cluster weights if there are clusters
    wee_cluster = wee if p_in == p_out else 1.9 * wee

    # define numpy array for data storing
    all_data = np.zeros((realizations, trials, n_e + n_i, int(t / winlen) // 2))

    for realization in range(realizations):
        # clear workspace to make sure that is a new realization of the network
        clear(True, True)
        reinit()

        # set up new random bias parameter for every type of neuron
        mu_e = vr + np.random.uniform(mu_min_e, mu_max_e, n_e) * dv  # bias for excitatory neurons
        mu_i = vr + np.random.uniform(mu_min_i, mu_max_i, n_i) * dv  # bias for excitatory neurons

        # Let's create an equation object from our string and parameters
        model_eqs = Equations(eqs_string)

        # Let's create 5000 neurons
        all_neurons = NeuronGroup(
            N=n_e + n_i,
            model=model_eqs,
            threshold=vt,
            reset=vr,
            refractory=refrac,
            freeze=True,
            method="Euler",
            compile=True,
        )

        # Divide the neurons into excitatory and inhibitory ones
        neurons_e = all_neurons[0:n_e]
        neurons_i = all_neurons[n_e : n_e + n_i]

        # set the bias
        neurons_e.mu = mu_e
        neurons_i.mu = mu_i
        neurons_e.tau = tau_e
        neurons_i.tau = tau_i
        neurons_e.tau_2 = tau_syn_2_e
        neurons_i.tau_2 = tau_syn_2_i
        all_neurons.tau_1 = tau_syn_1

        # set up connections
        connections = Connection(all_neurons, all_neurons, "y")

        # do the cluster connection like cross validation: cluster neuron := test idx; other neurons := train idx
        kf = KFold(n=n_e, n_folds=k)
        for idx_out, idx_in in kf:  # idx_out holds all other neurons; idx_in holds all cluster neurons
            # connect current cluster to itself
            connections.connect_random(
                all_neurons[idx_in[0] : idx_in[-1]],
                all_neurons[idx_in[0] : idx_in[-1]],
                sparseness=p_in,
                weight=wee_cluster,
            )
            # connect current cluster to other neurons
            connections.connect_random(
                all_neurons[idx_in[0] : idx_in[-1]], all_neurons[idx_out[0] : idx_out[-1]], sparseness=p_out, weight=wee
            )

        # connect all excitatory to all inhibitory, irrespective of clustering
        connections.connect_random(all_neurons[0:n_e], all_neurons[n_e : (n_e + n_i)], sparseness=p_ie, weight=wie)
        # connect all inhibitory to all excitatory
        connections.connect_random(all_neurons[n_e : (n_e + n_i)], all_neurons[0:n_e], sparseness=p_ei, weight=wei)
        # connect all inhibitory to all inhibitory
        connections.connect_random(
            all_neurons[n_e : (n_e + n_i)], all_neurons[n_e : (n_e + n_i)], sparseness=p_ii, weight=wii
        )

        # set up spike monitors
        spike_mon_e = SpikeMonitor(neurons_e)
        spike_mon_i = SpikeMonitor(neurons_i)
        # set up network with monitors
        network = Network(all_neurons, connections, spike_mon_e, spike_mon_i)

        # run this network for some number of trials, every time with
        for trial in range(trials):
            # different initial values
            all_neurons.V = vr + (vt - vr) * np.random.rand(len(all_neurons)) * 1.4

            # Calibration phase
            # run for the first half of the time to let the neurons adapt
            network.run(t / 2)

            # reset monitors to start recording phase
            spike_mon_i.reinit()
            spike_mon_e.reinit()

            # stimulation if duration is given
            # define index variable for the stimulation possibility (is 0 for stimulation time=0)
            t_stim_idx = int(t_stim / (winlen / ms))
            if not (t_stim == 0):
                # Stimulation phase, increase input to subset of clusters
                all_neurons[:400].mu += 0.07 * dv
                network.run(t_stim * ms, report="text")
                # set back to normal
                all_neurons[:400].mu -= 0.07 * dv
                # save data
                all_data[realization, trial, :n_e, :t_stim_idx] = spikes_counter(spike_mon_e, winlen)
                all_data[realization, trial, n_e:, :t_stim_idx] = spikes_counter(spike_mon_i, winlen)
                # reset monitors
                spike_mon_e.reinit()
                spike_mon_i.reinit()
            # run the remaining time of the simulation
            network.run((t / 2) - t_stim * ms, report="text")

            # save results
            all_data[realization, trial, :n_e, t_stim_idx:] = spikes_counter(spike_mon_e, winlen)
            all_data[realization, trial, n_e:, t_stim_idx:] = spikes_counter(spike_mon_i, winlen)

            if verbose:
                plt.ion()
                plt.figure()
                raster_plot(spike_mon_e)
                plt.title("Excitatory neurons")

            spike_mon_e.reinit()
            spike_mon_i.reinit()

    return all_data
Exemple #38
0
class ModelFitting(Fitness):
    def initialize(self, **kwds):
        # Initialization of variables
        self.use_gpu = self.unit_type=='GPU'
        # Gets the key,value pairs in shared_data
        for key, val in self.shared_data.iteritems():
            setattr(self, key, val)
        # Gets the key,value pairs in **kwds
        for key, val in kwds.iteritems():
            setattr(self, key, val)
        self.neurons = self.nodesize
        self.groups = self.groups
        self.model = cPickle.loads(self.model)
        if type(self.model) is str:
            self.model = Equations(self.model)
        
        self.initialize_neurongroup()
        self.transform_data()
        self.inject_input()
        
#        if self.use_gpu:
#            ########
#            # TODO
#            ########
#            # Select integration scheme according to method
#            if self.method == 'Euler': scheme = euler_scheme
#            elif self.method == 'RK': scheme = rk2_scheme
#            elif self.method == 'exponential_Euler': scheme = exp_euler_scheme
#            else: raise Exception("The numerical integration method is not valid")
#            
#            self.mf = GPUModelFitting(self.group, self.model, self.input, self.I_offset,
#                                      self.spiketimes, self.spiketimes_offset, zeros(self.neurons), 0*ms, self.delta,
#                                      precision=self.precision, scheme=scheme)
#        else:
#            self.cc = CoincidenceCounter(self.group, self.spiketimes, self.spiketimes_offset,
#                                        onset=self.onset, delta=self.delta)
    
    def initialize_neurongroup(self):
        # Add 'refractory' parameter on the CPU only
        if not self.use_gpu:
            if self.max_refractory is not None:
                refractory = 'refractory'
                self.model.add_param('refractory', second)
            else:
                refractory = self.refractory
        else:
            if self.max_refractory is not None:
                refractory = 0*ms
            else:
                refractory = self.refractory

        # Must recompile the Equations : the functions are not transfered after pickling/unpickling
        self.model.compile_functions()

        self.group = NeuronGroup(self.neurons,
                                 model=self.model,
                                 reset=self.reset,
                                 threshold=self.threshold,
                                 refractory=refractory,
                                 max_refractory = self.max_refractory,
                                 method = self.method,
                                 clock=Clock(dt=self.dt))
        
        if self.initial_values is not None:
            for param, value in self.initial_values.iteritems():
                self.group.state(param)[:] = value
    
    def transform_data(self):
        self.transformer = DataTransformer(self.neurons,
                                           self.inputs,
                                           spikes = self.spikes, 
                                           traces = self.traces,
                                           dt = self.dt,
                                           slices = self.slices,
                                           overlap = self.overlap, 
                                           groups = self.groups)
        self.total_steps = self.transformer.total_steps
        self.sliced_duration = self.transformer.sliced_duration
        
        self.sliced_inputs = self.transformer.slice_traces(self.inputs)
        self.inputs_inline, self.inputs_offset = self.transformer.transform_traces(self.sliced_inputs)
        
        if self.traces is not None:
            self.sliced_traces = self.transformer.slice_traces(self.traces)
            self.traces_inline, self.traces_offset = self.transformer.transform_traces(self.sliced_traces)
        else:
            self.sliced_traces, self.traces_inline, self.traces_offset = None, None, None
        
        if self.spikes is not None:
            self.sliced_spikes = self.transformer.slice_spikes(self.spikes)
            self.spikes_inline, self.spikes_offset = self.transformer.transform_spikes(self.sliced_spikes)
        else:
            self.sliced_spikes, self.spikes_inline, self.spikes_offset = None, None, None
    
    def inject_input(self):
        # Injects current in consecutive subgroups, where I_offset have the same value
        # on successive intervals
        I_offset = self.inputs_offset
        k = -1
        for i in hstack((nonzero(diff(I_offset))[0], len(I_offset) - 1)):
            I_offset_subgroup_value = I_offset[i]
            I_offset_subgroup_length = i - k
            sliced_subgroup = self.group.subgroup(I_offset_subgroup_length)
            input_sliced_values = self.inputs_inline[I_offset_subgroup_value:I_offset_subgroup_value + self.total_steps]
            sliced_subgroup.set_var_by_array(self.input_var, TimedArray(input_sliced_values, clock=self.group.clock))
            k = i
    
    def initialize_criterion(self, delays,tau_metric = None):
        # general criterion parameters
        params = dict(group=self.group, traces=self.sliced_traces, spikes=self.sliced_spikes, 
                      targets_count=self.groups*self.slices, duration=self.sliced_duration, onset=self.onset, 
                      spikes_inline=self.spikes_inline, spikes_offset=self.spikes_offset,
                      traces_inline=self.traces_inline, traces_offset=self.traces_offset,
                      delays=delays, when='start')
        
        criterion_name = self.criterion.__class__.__name__
        
        # criterion-specific parameters
        if criterion_name == 'GammaFactor':
            params['delta'] = self.criterion.delta
            params['coincidence_count_algorithm'] = self.criterion.coincidence_count_algorithm
            self.criterion_object = GammaFactorCriterion(**params)
            
        if criterion_name == 'LpError':
            params['p'] = self.criterion.p
            params['varname'] = self.criterion.varname
            self.criterion_object = LpErrorCriterion(**params)
            
        if criterion_name == 'VanRossum':
            params['tau'] = self.criterion.tau
            self.criterion_object = VanRossumCriterion(**params)
            
        if criterion_name == 'Brette':
            params['tau_metric'] = tau_metric
            self.criterion_object = BretteCriterion(**params)

    
    def update_neurongroup(self, **param_values):
        """
        Inject fitting parameters into the NeuronGroup
        """
        # Sets the parameter values in the NeuronGroup object
        self.group.reinit()
        for param, value in param_values.iteritems():
            self.group.state(param)[:] = kron(value, ones(self.slices)) # kron param_values if slicing
        
        # Reinitializes the model variables
        if self.initial_values is not None:
            for param, value in self.initial_values.iteritems():
                self.group.state(param)[:] = value
    
    def combine_sliced_values(self, values):
        if type(values) is tuple:
            combined_values = tuple([sum(reshape(v, (self.slices, -1)), axis=0) for v in values])
        else:
            combined_values = sum(reshape(values, (self.slices, -1)), axis=0)
        return combined_values
    
    def evaluate(self, **param_values):
        """
        Use fitparams['delays'] to take delays into account
        Use fitparams['refractory'] to take refractory into account
        """
        delays = param_values.pop('delays', zeros(self.neurons))
        refractory = param_values.pop('refractory', zeros(self.neurons))
        tau_metric = param_values.pop('tau_metric', zeros(self.neurons))

        # repeat spike delays and refractory to take slices into account
        delays = kron(delays, ones(self.slices))
        refractory = kron(refractory, ones(self.slices))
        tau_metric = kron(tau_metric, ones(self.slices))
        
        self.update_neurongroup(**param_values)
        if self.criterion.__class__.__name__ == 'Brette':
            self.initialize_criterion(delays,tau_metric)
        else:
            self.initialize_criterion(delays)
        
        if self.use_gpu:
            pass
            #########
            # TODO
            #########
#            # Reinitializes the simulation object
#            self.mf.reinit_vars(self.input, self.I_offset, self.spiketimes, self.spiketimes_offset, delays, refractory)
#            # LAUNCHES the simulation on the GPU
#            self.mf.launch(self.duration, self.stepsize)
#            coincidence_count = self.mf.coincidence_count
#            spike_count = self.mf.spike_count
        else:
            # set the refractory period
            if self.max_refractory is not None:
                self.group.refractory = refractory
            
            # Launch the simulation on the CPU
            self.group.clock.reinit()
            net = Network(self.group, self.criterion_object)
            net.run(self.duration)
        
        sliced_values = self.criterion_object.get_values()
        combined_values = self.combine_sliced_values(sliced_values)
        values = self.criterion_object.normalize(combined_values)
        return values
Exemple #39
0
    def __init__(self, lip_size, params, background_inputs=None, visual_cortex_input=None,
                 go_input=None):
        self.lip_size=lip_size
        self.N=2*self.lip_size

        self.params=params
        self.background_inputs=background_inputs
        self.visual_cortex_input=visual_cortex_input
        self.go_input=go_input

        ## Set up equations

        # Exponential integrate-and-fire neuron
        eqs = exp_IF(params.C, params.gL, params.EL, params.VT, params.DeltaT)

        # AMPA conductance - recurrent input current
        eqs += exp_synapse('g_ampa_r', params.tau_ampa, siemens)
        eqs += Current('I_ampa_r=g_ampa_r*(E-vm): amp', E=params.E_ampa)

        # AMPA conductance - background input current
        eqs += exp_synapse('g_ampa_b', params.tau_ampa, siemens)
        eqs += Current('I_ampa_b=g_ampa_b*(E-vm): amp', E=params.E_ampa)

        # AMPA conductance - task input current
        eqs += exp_synapse('g_ampa_x', params.tau_ampa, siemens)
        eqs += Current('I_ampa_x=g_ampa_x*(E-vm): amp', E=params.E_ampa)

        # AMPA conductance - go input current
        eqs += exp_synapse('g_ampa_g', params.tau_ampa, siemens)
        eqs += Current('I_ampa_g=g_ampa_g*(E-vm): amp', E=params.E_ampa)

        # Voltage-dependent NMDA conductance
        eqs += biexp_synapse('g_nmda', params.tau1_nmda, params.tau2_nmda, siemens)
        eqs += Equations('g_V = 1/(1+(Mg/3.57)*exp(-0.062 *vm/mV)) : 1 ', Mg=params.Mg)
        eqs += Current('I_nmda=g_V*g_nmda*(E-vm): amp', E=params.E_nmda)

        # GABA-A conductance
        eqs += exp_synapse('g_gaba_a', params.tau_gaba_a, siemens)
        eqs += Current('I_gaba_a=g_gaba_a*(E-vm): amp', E=params.E_gaba_a)

        # GABA-B conductance
        eqs += biexp_synapse('g_gaba_b', params.tau1_gaba_b, params.tau2_gaba_b, siemens)
        eqs += Current('I_gaba_b=g_gaba_b*(E-vm): amp', E=params.E_gaba_b)

        # Total synaptic conductance
        eqs += Equations('g_syn=g_ampa_r+g_ampa_x+g_ampa_g+g_ampa_b+g_V*g_nmda+g_gaba_a+g_gaba_b : siemens')
        eqs += Equations('g_syn_exc=g_ampa_r+g_ampa_x+g_ampa_g+g_ampa_b+g_V*g_nmda : siemens')
        # Total synaptic current
        eqs += Equations('I_abs=abs(I_ampa_r)+abs(I_ampa_b)+abs(I_ampa_x)+abs(I_ampa_g)+abs(I_nmda)+abs(I_gaba_a) : amp')

        NeuronGroup.__init__(self, self.N, model=eqs, threshold=-20*mV, reset=params.EL, compile=True)

        self.init_subpopulations()

        self.connections=[]

        self.init_connectivity()

        if self.background_inputs is not None:
            # Background -> E+I population connections
            background_left_ampa=init_connection(self.background_inputs[0], self.left_lip.neuron_group, 'g_ampa_b',
                self.params.w_ampa_min, self.params.w_ampa_max, self.params.p_b_e, delay=5*ms)
            background_right_ampa=init_connection(self.background_inputs[1], self.right_lip.neuron_group, 'g_ampa_b',
                self.params.w_ampa_min, self.params.w_ampa_max, self.params.p_b_e, delay=5*ms)
            self.connections.append(background_left_ampa)
            self.connections.append(background_right_ampa)

        if self.visual_cortex_input is not None:
            # Task input -> E population connections
            vc_left_lip_ampa=init_connection(self.visual_cortex_input[0], self.left_lip.e_contra_vis, 'g_ampa_x',
                self.params.w_ampa_min, self.params.w_ampa_max, self.params.p_v_ec_vis, delay=270*ms)
            vc_right_lip_ampa=init_connection(self.visual_cortex_input[1], self.right_lip.e_contra_vis, 'g_ampa_x',
                self.params.w_ampa_min, self.params.w_ampa_max, self.params.p_v_ec_vis, delay=270*ms)
            self.connections.append(vc_left_lip_ampa)
            self.connections.append(vc_right_lip_ampa)

        if self.go_input is not None:
            go_left_lip_i_ampa=init_connection(self.go_input, self.left_lip.i_group, 'g_ampa_g', self.params.w_ampa_min,
                self.params.w_ampa_max, self.params.p_g_i, delay=5*ms)
            go_right_lip_i_ampa=init_connection(self.go_input, self.right_lip.i_group, 'g_ampa_g', self.params.w_ampa_min,
                self.params.w_ampa_max, self.params.p_g_i, delay=5*ms)
            go_left_lip_e_ampa=init_connection(self.go_input, self.left_lip.e_group, 'g_ampa_g', self.params.w_ampa_min,
                self.params.w_ampa_max, self.params.p_g_e, delay=5*ms)
            go_right_lip_e_ampa=init_connection(self.go_input, self.right_lip.e_group, 'g_ampa_g', self.params.w_ampa_min,
                self.params.w_ampa_max, self.params.p_g_e, delay=5*ms)
            self.connections.append(go_left_lip_i_ampa)
            self.connections.append(go_right_lip_i_ampa)
            self.connections.append(go_left_lip_e_ampa)
            self.connections.append(go_right_lip_e_ampa)
Vrest = 0*mV
Vth = 20*mV
tau = 20*ms
Nnrns = 4
Ningroups = 1
Nin_per_group = 50
fin = 20*Hz
ingroup_sync = [0.5]
sigma = 0*ms
weight = 2.0*mV
Nallin = Nin_per_group*Ningroups
Nin = 25  # total number of connections each cell receives

lifeq_exc = Equations("dV/dt = (Vrest-V)/tau : volt")
lifeq_exc.prepare()
nrngroup = NeuronGroup(Nnrns, lifeq_exc, threshold="V>Vth", reset=Vrest,
                       refractory=2*ms)
nrngroup.V = Vrest
network.add(nrngroup)
print("Setting up inputs and connections ...")
ingroups = []
inpconns = []
for ing in range(Ningroups):
    ingroup = sl.tools.fast_synchronous_input_gen(Nin_per_group, fin,
                                                  ingroup_sync[ing], sigma, duration,
                                                  shuffle=False)
    inpconn = Connection(ingroup, nrngroup, 'V')
    ingroups.append(ingroup)
    inpconns.append(inpconn)
inputneurons = []

# CONNECTIONS
Exemple #41
0
class Simulator(object):
    def __init__(self, model, reset, threshold, 
                 inputs, input_var = 'I', dt = defaultclock.dt,
                 refractory = 0*ms, max_refractory = None,
                 spikes = None, traces = None,
                 groups = 1,
                 slices = 1, overlap = 0*second,
                 onset = 0*second,
                 neurons = 1000, # = nodesize = number of neurons on this node = (total number of neurons on this node)/(number of slices)
                 initial_values = None,
                 unit_type = 'CPU',
                 stepsize = 128*ms,
                 precision = 'double',
                 criterion = None,
                 statemonitor_var=None,
                 spikemonitor = False,
                 nbr_spikes = 200,
                 ntrials=1,
                 method = 'Euler',
#                 stand_alone=False,
#                 neuron_group=None,
#                 given_neuron_group=False
                 ):
#        print refractory, max_refractory
#        self.neuron_group = neuron_group
#        self.given_neuron_group = False
#        self.stand_alone = given_neuron_group
        self.model = model
        self.reset = reset
        self.threshold = threshold
        self.inputs = inputs
        self.input_var = input_var
        self.dt = dt
        self.refractory = refractory
        self.max_refractory = max_refractory
        self.spikes = spikes
        self.traces = traces
        self.initial_values = initial_values 
        self.groups = groups
        self.slices = slices
        self.overlap = overlap
        self.ntrials=ntrials
        self.onset = onset
        self.neurons = neurons
        self.unit_type = unit_type
        if type(statemonitor_var) is not list and statemonitor_var is not None:
            statemonitor_var = [statemonitor_var]
        self.statemonitor_var = statemonitor_var
        self.spikemonitor=spikemonitor
        self.nbr_spikes = nbr_spikes
        self.stepsize = stepsize
        self.precision = precision
        self.criterion = criterion
        self.method = method
        self.use_gpu = self.unit_type=='GPU'
        
        if self.statemonitor_var is not None:
            self.statemonitor_values = [zeros(self.neurons)]*len(statemonitor_var)
        
        self.initialize_neurongroup()
        self.transform_data()
        self.inject_input()
        if self.criterion.__class__.__name__ == 'Brette':
            self.initialize_criterion(delays=zeros(self.neurons),tau_metric=zeros(self.neurons))
        else:
            self.initialize_criterion(delays=zeros(self.neurons))
        if self.use_gpu:
            self.initialize_gpu()
            
    def initialize_neurongroup(self):
        # Add 'refractory' parameter on the CPU only
        if not self.use_gpu:
            if self.max_refractory is not None:
                refractory = 'refractory'
                self.model.add_param('refractory', second)
            else:
                refractory = self.refractory
        else:
            if self.max_refractory is not None:
                refractory = 0*ms
            else:
                refractory = self.refractory
        
        # Must recompile the Equations : the functions are not transfered after pickling/unpickling
        self.model.compile_functions()
#        print refractory, self.max_refractory
        if  type(refractory) is double:
            refractory=refractory*second
#        if self.give_neuron_group == False:
        self.group = NeuronGroup(self.neurons, # TODO: * slices?
                                 model=self.model,
                                 reset=self.reset,
                                 threshold=self.threshold,
                                 refractory=refractory,
                                 max_refractory = self.max_refractory,
                                 method = self.method,
                                 clock=Clock(dt=self.dt))
        
        if self.initial_values is not None:
            for param, value in self.initial_values.iteritems():
                self.group.state(param)[:] = value

#        else: 
#            self.group = self.neuron_group
    
    def initialize_gpu(self):
            # Select integration scheme according to method
            if self.method == 'Euler': scheme = euler_scheme
            elif self.method == 'RK': scheme = rk2_scheme
            elif self.method == 'exponential_Euler': scheme = exp_euler_scheme
            else: raise Exception("The numerical integration method is not valid")
            
            self.mf = GPUModelFitting(self.group, self.model, self.criterion_object,
                                      self.input_var, self.neurons/self.groups,
                                      self.onset, 
                                      statemonitor_var = self.statemonitor_var,
                                      spikemonitor = self.spikemonitor,
                                      nbr_spikes = self.nbr_spikes,
                                      duration = self.sliced_duration,
                                      precision=self.precision, scheme=scheme)
    
    def transform_data(self):
        self.transformer = DataTransformer(self.neurons,
                                           self.inputs,
                                           spikes = self.spikes, 
                                           traces = self.traces,
                                           dt = self.dt,
                                           slices = self.slices,
                                           overlap = self.overlap, 
                                           groups = self.groups,ntrials=self.ntrials)
        self.total_steps = self.transformer.total_steps
        self.sliced_duration = self.transformer.sliced_duration
        if self.ntrials>1:
            self.inputs_inline = self.inputs.flatten()
            self.sliced_inputs = self.inputs
            self.inputs_offset  = zeros(self.neurons)
        else:
            self.sliced_inputs = self.transformer.slice_traces(self.inputs)
            self.inputs_inline, self.inputs_offset = self.transformer.transform_traces(self.sliced_inputs)

        if self.traces is not None:
            self.sliced_traces = self.transformer.slice_traces(self.traces)
            self.traces_inline, self.traces_offset = self.transformer.transform_traces(self.sliced_traces)
        else:
            self.sliced_traces, self.traces_inline, self.traces_offset = None, None, None
        
        if self.spikes is not None:
            if self.ntrials>1:
                self.sliced_spikes = self.transformer.slice_spikes(self.spikes)
                self.spikes_inline, self.trials_offset = self.transformer.transform_trials(self.spikes)
                self.spikes_offset = zeros((self.neurons),dtype=int)
            else:
                self.sliced_spikes = self.transformer.slice_spikes(self.spikes)
                self.spikes_inline, self.spikes_offset = self.transformer.transform_spikes(self.sliced_spikes)
                self.trials_offset=[0]
        else:
            self.sliced_spikes, self.spikes_inline, self.spikes_offset,self.trials_offset = None, None, None, None
        
        
    def inject_input(self):
        # Injects current in consecutive subgroups, where I_offset have the same value
        # on successive intervals
        I_offset = self.inputs_offset
        k = -1
        for i in hstack((nonzero(diff(I_offset))[0], len(I_offset) - 1)):
            I_offset_subgroup_value = I_offset[i]
            I_offset_subgroup_length = i - k
            sliced_subgroup = self.group.subgroup(I_offset_subgroup_length)
            input_sliced_values = self.inputs_inline[I_offset_subgroup_value:I_offset_subgroup_value + self.total_steps]
            sliced_subgroup.set_var_by_array(self.input_var, TimedArray(input_sliced_values, clock=self.group.clock))
            k = i
    
    def initialize_criterion(self, **criterion_params):
        # general criterion parameters
        params = dict(group=self.group, traces=self.sliced_traces, spikes=self.sliced_spikes, 
                      targets_count=self.groups*self.slices, duration=self.sliced_duration, onset=self.onset, 
                      spikes_inline=self.spikes_inline, spikes_offset=self.spikes_offset,
                      traces_inline=self.traces_inline, traces_offset=self.traces_offset,trials_offset=self.trials_offset)
        for key,val in criterion_params.iteritems():
            params[key] = val
        criterion_name = self.criterion.__class__.__name__
        
        # criterion-specific parameters
        if criterion_name == 'GammaFactor':
            params['delta'] = self.criterion.delta
            params['coincidence_count_algorithm'] = self.criterion.coincidence_count_algorithm
            params['fr_weight'] = self.criterion.fr_weight
            self.criterion_object = GammaFactorCriterion(**params)
            
        if criterion_name == 'GammaFactor2':
            params['delta'] = self.criterion.delta
            params['coincidence_count_algorithm'] = self.criterion.coincidence_count_algorithm
            params['fr_weight'] = self.criterion.fr_weight
            params['nlevels'] = self.criterion.nlevels
            params['level_duration'] = self.criterion.level_duration
            self.criterion_object = GammaFactorCriterion2(**params)

        if criterion_name == 'LpError':
            params['p'] = self.criterion.p
            params['varname'] = self.criterion.varname
            params['method'] = self.criterion.method
            params['insets'] = self.criterion.insets
            params['outsets'] = self.criterion.outsets
            params['points'] = self.criterion.points
            self.criterion_object = LpErrorCriterion(**params)
            
        if criterion_name == 'VanRossum':
            params['tau'] = self.criterion.tau
            self.criterion_object = VanRossumCriterion(**params)
        
        if criterion_name == 'Brette':
            self.criterion_object = BretteCriterion(**params)
    
    def update_neurongroup(self, **param_values):
        """
        Inject fitting parameters into the NeuronGroup
        """
        # Sets the parameter values in the NeuronGroup object
        self.group.reinit()
        for param, value in param_values.iteritems():
            self.group.state(param)[:] = kron(value, ones(self.slices)) # kron param_values if slicing
        
        # Reinitializes the model variables
        if self.initial_values is not None:
            for param, value in self.initial_values.iteritems():
                self.group.state(param)[:] = value
    
    def combine_sliced_values(self, values):
        if type(values) is tuple:
            combined_values = tuple([sum(reshape(v, (self.slices, -1)), axis=0) for v in values])
        else:
            combined_values = sum(reshape(values, (self.slices, -1)), axis=0)
        return combined_values
    
    def run(self, **param_values):
        delays = param_values.pop('delays', zeros(self.neurons))
        
#        print self.refractory,self.max_refractory
        if self.max_refractory is not None:
            refractory = param_values.pop('refractory', zeros(self.neurons))
        else:
            refractory = self.refractory*ones(self.neurons)
            
        tau_metric = param_values.pop('tau_metric', zeros(self.neurons))
        self.update_neurongroup(**param_values)

        # repeat spike delays and refractory to take slices into account
        delays = kron(delays, ones(self.slices))
        refractory = kron(refractory, ones(self.slices))
        tau_metric = kron(tau_metric, ones(self.slices))
        # TODO: add here parameters to criterion_params if a criterion must use some parameters
        criterion_params = dict(delays=delays)

        if self.criterion.__class__.__name__ == 'Brette':
            criterion_params['tau_metric'] = tau_metric
    
        
        self.update_neurongroup(**param_values)
        self.initialize_criterion(**criterion_params)
        
        if self.use_gpu:
            # Reinitializes the simulation object
            self.mf.reinit_vars(self.criterion_object,
                                self.inputs_inline, self.inputs_offset,
                                self.spikes_inline, self.spikes_offset,
                                self.traces_inline, self.traces_offset,
                                delays, refractory
                                )
            # LAUNCHES the simulation on the GPU
            self.mf.launch(self.sliced_duration, self.stepsize)
            # Synchronize the GPU values with a call to gpuarray.get()
            self.criterion_object.update_gpu_values()
        else:
            # set the refractory period
            if self.max_refractory is not None:
                self.group.refractory = refractory
            # Launch the simulation on the CPU
            self.group.clock.reinit()
            net = Network(self.group, self.criterion_object)
            if self.statemonitor_var is not None:
                self.statemonitors = []
                for state in self.statemonitor_var:
                    monitor = StateMonitor(self.group, state, record=True)
                    self.statemonitors.append(monitor)
                    net.add(monitor)
            net.run(self.sliced_duration)
        
        sliced_values = self.criterion_object.get_values()
        combined_values = self.combine_sliced_values(sliced_values)
        values = self.criterion_object.normalize(combined_values)
        return values

    def get_statemonitor_values(self):
        if not self.use_gpu:
            return [monitor.values for monitor in self.statemonitors]
        else:
            return self.mf.get_statemonitor_values()
        
    def get_spikemonitor_values(self):
        if not self.use_gpu:
            return [monitor.values for monitor in self.statemonitors]
        else:
            return self.mf.get_spikemonitor_values()
Exemple #42
0
def test_stim_pyramidal_impact():
    simulation_clock = Clock(dt=.5 * ms)
    trial_duration = 1 * second
    dcs_start_time = .5 * second

    stim_levels = [-8, -6, -4, -2, -1, -.5, -.25, 0, .25, .5, 1, 2, 4, 6, 8]
    voltages = np.zeros(len(stim_levels))
    for idx, stim_level in enumerate(stim_levels):
        print('testing stim_level %.3fpA' % stim_level)
        eqs = exp_IF(default_params.C, default_params.gL, default_params.EL,
                     default_params.VT, default_params.DeltaT)

        # AMPA conductance - recurrent input current
        eqs += exp_synapse('g_ampa_r', default_params.tau_ampa, siemens)
        eqs += Current('I_ampa_r=g_ampa_r*(E-vm): amp',
                       E=default_params.E_ampa)

        # AMPA conductance - background input current
        eqs += exp_synapse('g_ampa_b', default_params.tau_ampa, siemens)
        eqs += Current('I_ampa_b=g_ampa_b*(E-vm): amp',
                       E=default_params.E_ampa)

        # AMPA conductance - task input current
        eqs += exp_synapse('g_ampa_x', default_params.tau_ampa, siemens)
        eqs += Current('I_ampa_x=g_ampa_x*(E-vm): amp',
                       E=default_params.E_ampa)

        # Voltage-dependent NMDA conductance
        eqs += biexp_synapse('g_nmda', default_params.tau1_nmda,
                             default_params.tau2_nmda, siemens)
        eqs += Equations('g_V = 1/(1+(Mg/3.57)*exp(-0.062 *vm/mV)) : 1 ',
                         Mg=default_params.Mg)
        eqs += Current('I_nmda=g_V*g_nmda*(E-vm): amp',
                       E=default_params.E_nmda)

        # GABA-A conductance
        eqs += exp_synapse('g_gaba_a', default_params.tau_gaba_a, siemens)
        eqs += Current('I_gaba_a=g_gaba_a*(E-vm): amp',
                       E=default_params.E_gaba_a)

        eqs += InjectedCurrent('I_dcs: amp')

        group = NeuronGroup(1,
                            model=eqs,
                            threshold=-20 * mV,
                            refractory=pyr_params.refractory,
                            reset=default_params.Vr,
                            compile=True,
                            freeze=True,
                            clock=simulation_clock)
        group.C = pyr_params.C
        group.gL = pyr_params.gL

        @network_operation(clock=simulation_clock)
        def inject_current(c):
            if simulation_clock.t > dcs_start_time:
                group.I_dcs = stim_level * pA

        monitor = StateMonitor(group, 'vm', simulation_clock, record=True)
        net = Network(group, monitor, inject_current)
        net.run(trial_duration, report='text')
        voltages[idx] = monitor.values[0, -1] * 1000

    voltages = voltages - voltages[7]
    plt.figure()
    plt.plot(stim_levels, voltages)
    plt.xlabel('Stimulation level (pA)')
    plt.ylabel('Voltage Change (mV)')
    plt.show()
Exemple #43
0
 def reinit(self):
     NeuronGroup.reinit(self)
     self.filterbank.buffer_init()
     self.buffer_pointer = self.buffersize
     self.buffer_start = -self.buffersize
Exemple #44
0
    def __init__(self, clock, params=zheng_params, network=None):
        eqs=Equations('''
        G_total                                                       : siemens
        G_total_exc                                                   : siemens
        ds/dt=eta*(G_total-G_base)/G_base-s/tau_s-(f_in-1.0)/tau_f    : 1
        df_in/dt=s/second                                             : 1.0
        dv/dt=1/tau_o*(f_in-f_out)                                    : 1
        f_out=v**(1.0/alpha)                                          : 1
        do_e/dt=1.0/(phi/f_in)*(-o_e+(1.0-g)*(1.0-(1.0-e_base/(1.0-g_0))**(1.0/f_in))) : %.4f
        dcb/dt=1.0/(phi/f_in)*(-cb-(c_ab*o_e)/oe_log+c_ab*g)  : 1
        oe_log                            : 1
        cmr_o=(cb-g*c_ab)/(cb_0-g_0*c_ab) : 1
        dg/dt=1.0/(j*v_ratio*((r*transitTime)/e_base))*((cmr_o-1.0)-k*s)  : %.4f
        dq/dt=1/tau_o*((f_in*o_e/e_base)-f_out*q/v)                   : 1
        y=v_0*((k1+k2)*(1-q)-(k2+k3)*(1-v))                        : 1
        G_base                                                        : siemens
        eta                                                           : 1/second
        tau_s                                                         : second
        tau_f                                                         : second
        alpha                                                         : 1
        tau_o                                                         : second
        v_0                                                           : 1
        k1                                                            : 1
        k2                                                            : 1
        k3                                                            : 1
        phi                                                           : %.4f*second
        e_base                                                        : %.4f
        g_0                                                           : %.4f
        c_ab                                                          : 1
        cb_0                                                          : 1
        v_ratio                                                       : 1
        j                                                             : 1
        transitTime                                                   : second
        k                                                             : 1
        r                                                             : 1
        ''' % (params.e_base, params.g_0, params.phi, params.e_base, params.g_0))
        NeuronGroup.__init__(self, 1, model=eqs, clock=clock, compile=True, freeze=True)

        self.params=params
        self.G_base=params.G_base
        self.eta=params.eta
        self.tau_s=params.tau_s
        self.tau_f=params.tau_f
        self.alpha=params.alpha
        self.tau_o=params.tau_o
        self.e_base=params.e_base
        self.v_0=params.v_0
        self.k1=params.k1
        self.params.s_e=params.s_e_0*exp(-params.TE/params.T_2E)
        self.params.s_i=params.s_i_0*exp(-params.TE/params.T_2I)
        self.params.beta=self.params.s_e/self.params.s_i
        self.k2=self.params.beta*params.r_0*self.e_base*params.TE
        self.k3=self.params.beta-1.0
        self.c_ab=self.params.c_ab
        self.cb_0=self.params.cb_0
        self.g_0=self.params.g_0
        self.phi=self.params.phi
        self.v_ratio=self.params.v_ratio
        self.j=self.params.j
        self.transitTime=self.params.transitTime
        self.k=self.params.k
        self.r=self.params.r

        self.f_in=1.0
        self.s=0.0
        self.v=1.0
        self.o_e=self.e_base
        self.cb=self.cb_0
        self.g=self.g_0
        self.oe_log=np.log(1.0-self.o_e/(1.0-self.g))

        self.q=1.0

        if network is not None:
            self.G_total = linked_var(network, 'g_syn', func=sum)
            self.G_total_exc = linked_var(network, 'g_syn_exc', func=sum)
Exemple #45
0
class Simulator(object):
    def __init__(
            self,
            model,
            reset,
            threshold,
            inputs,
            input_var='I',
            dt=defaultclock.dt,
            refractory=0 * ms,
            max_refractory=None,
            spikes=None,
            traces=None,
            groups=1,
            slices=1,
            overlap=0 * second,
            onset=0 * second,
            neurons=1000,  # = nodesize = number of neurons on this node = total number of neurons/slices
            initial_values=None,
            unit_type='CPU',
            stepsize=100 * ms,
            precision='double',
            criterion=None,
            statemonitor_var=None,
            method='Euler'):
        self.model = model
        self.reset = reset
        self.threshold = threshold
        self.inputs = inputs
        self.input_var = input_var
        self.dt = dt
        self.refractory = refractory
        self.max_refractory = max_refractory
        self.spikes = spikes
        self.traces = traces
        self.initial_values = initial_values
        self.groups = groups
        self.slices = slices
        self.overlap = overlap
        self.onset = onset
        self.neurons = neurons
        self.unit_type = unit_type
        self.statemonitor_var = statemonitor_var
        self.stepsize = stepsize
        self.precision = precision
        self.criterion = criterion
        self.method = method
        self.use_gpu = self.unit_type == 'GPU'

        if self.statemonitor_var is not None:
            self.statemonitor_values = zeros(self.neurons)

        self.initialize_neurongroup()
        self.transform_data()
        self.inject_input()
        self.initialize_criterion(delays=zeros(self.neurons))

        if self.use_gpu:
            self.initialize_gpu()

    def initialize_neurongroup(self):
        # Add 'refractory' parameter on the CPU only
        if not self.use_gpu:
            if self.max_refractory is not None:
                refractory = 'refractory'
                self.model.add_param('refractory', second)
            else:
                refractory = self.refractory
        else:
            if self.max_refractory is not None:
                refractory = 0 * ms
            else:
                refractory = self.refractory

        # Must recompile the Equations : the functions are not transfered after pickling/unpickling
        self.model.compile_functions()

        self.group = NeuronGroup(self.neurons,
                                 model=self.model,
                                 reset=self.reset,
                                 threshold=self.threshold,
                                 refractory=refractory,
                                 max_refractory=self.max_refractory,
                                 method=self.method,
                                 clock=Clock(dt=self.dt))

        if self.initial_values is not None:
            for param, value in self.initial_values.iteritems():
                self.group.state(param)[:] = value

    def initialize_gpu(self):
        # Select integration scheme according to method
        if self.method == 'Euler': scheme = euler_scheme
        elif self.method == 'RK': scheme = rk2_scheme
        elif self.method == 'exponential_Euler': scheme = exp_euler_scheme
        else: raise Exception("The numerical integration method is not valid")

        self.mf = GPUModelFitting(self.group,
                                  self.model,
                                  self.criterion_object,
                                  self.input_var,
                                  self.onset,
                                  statemonitor_var=self.statemonitor_var,
                                  duration=self.sliced_duration,
                                  precision=self.precision,
                                  scheme=scheme)

    def transform_data(self):
        self.transformer = DataTransformer(self.neurons,
                                           self.inputs,
                                           spikes=self.spikes,
                                           traces=self.traces,
                                           dt=self.dt,
                                           slices=self.slices,
                                           overlap=self.overlap,
                                           groups=self.groups)
        self.total_steps = self.transformer.total_steps
        self.sliced_duration = self.transformer.sliced_duration

        self.sliced_inputs = self.transformer.slice_traces(self.inputs)
        self.inputs_inline, self.inputs_offset = self.transformer.transform_traces(
            self.sliced_inputs)

        if self.traces is not None:
            self.sliced_traces = self.transformer.slice_traces(self.traces)
            self.traces_inline, self.traces_offset = self.transformer.transform_traces(
                self.sliced_traces)
        else:
            self.sliced_traces, self.traces_inline, self.traces_offset = None, None, None

        if self.spikes is not None:
            self.sliced_spikes = self.transformer.slice_spikes(self.spikes)
            self.spikes_inline, self.spikes_offset = self.transformer.transform_spikes(
                self.sliced_spikes)
        else:
            self.sliced_spikes, self.spikes_inline, self.spikes_offset = None, None, None

    def inject_input(self):
        # Injects current in consecutive subgroups, where I_offset have the same value
        # on successive intervals
        I_offset = self.inputs_offset
        k = -1
        for i in hstack((nonzero(diff(I_offset))[0], len(I_offset) - 1)):
            I_offset_subgroup_value = I_offset[i]
            I_offset_subgroup_length = i - k
            sliced_subgroup = self.group.subgroup(I_offset_subgroup_length)
            input_sliced_values = self.inputs_inline[
                I_offset_subgroup_value:I_offset_subgroup_value +
                self.total_steps]
            sliced_subgroup.set_var_by_array(
                self.input_var,
                TimedArray(input_sliced_values, clock=self.group.clock))
            k = i

    def initialize_criterion(self, **criterion_params):
        # general criterion parameters
        params = dict(group=self.group,
                      traces=self.sliced_traces,
                      spikes=self.sliced_spikes,
                      targets_count=self.groups * self.slices,
                      duration=self.sliced_duration,
                      onset=self.onset,
                      spikes_inline=self.spikes_inline,
                      spikes_offset=self.spikes_offset,
                      traces_inline=self.traces_inline,
                      traces_offset=self.traces_offset)
        for key, val in criterion_params.iteritems():
            params[key] = val
        criterion_name = self.criterion.__class__.__name__

        # criterion-specific parameters
        if criterion_name == 'GammaFactor':
            params['delta'] = self.criterion.delta
            params[
                'coincidence_count_algorithm'] = self.criterion.coincidence_count_algorithm
            self.criterion_object = GammaFactorCriterion(**params)

        if criterion_name == 'LpError':
            params['p'] = self.criterion.p
            params['varname'] = self.criterion.varname
            self.criterion_object = LpErrorCriterion(**params)

    def update_neurongroup(self, **param_values):
        """
        Inject fitting parameters into the NeuronGroup
        """
        # Sets the parameter values in the NeuronGroup object
        self.group.reinit()
        for param, value in param_values.iteritems():
            self.group.state(param)[:] = kron(value, ones(
                self.slices))  # kron param_values if slicing

        # Reinitializes the model variables
        if self.initial_values is not None:
            for param, value in self.initial_values.iteritems():
                self.group.state(param)[:] = value

    def combine_sliced_values(self, values):
        if type(values) is tuple:
            combined_values = tuple(
                [sum(reshape(v, (self.slices, -1)), axis=0) for v in values])
        else:
            combined_values = sum(reshape(values, (self.slices, -1)), axis=0)
        return combined_values

    def run(self, **param_values):
        delays = param_values.pop('delays', zeros(self.neurons))
        refractory = param_values.pop('refractory', zeros(self.neurons))

        self.update_neurongroup(**param_values)

        # repeat spike delays and refractory to take slices into account
        delays = kron(delays, ones(self.slices))
        refractory = kron(refractory, ones(self.slices))

        # TODO: add here parameters to criterion_params if a criterion must use some parameters
        criterion_params = dict(delays=delays)

        self.update_neurongroup(**param_values)
        self.initialize_criterion(**criterion_params)

        if self.use_gpu:
            # Reinitializes the simulation object
            self.mf.reinit_vars(self.criterion_object, self.inputs_inline,
                                self.inputs_offset, self.spikes_inline,
                                self.spikes_offset, self.traces_inline,
                                self.traces_offset, delays, refractory)
            # LAUNCHES the simulation on the GPU
            self.mf.launch(self.sliced_duration, self.stepsize)
            # Synchronize the GPU values with a call to gpuarray.get()
            self.criterion_object.update_gpu_values()
        else:
            # set the refractory period
            if self.max_refractory is not None:
                self.group.refractory = refractory
            # Launch the simulation on the CPU
            self.group.clock.reinit()
            net = Network(self.group, self.criterion_object)
            if self.statemonitor_var is not None:
                self.statemonitor = StateMonitor(self.group,
                                                 self.statemonitor_var,
                                                 record=True)
                net.add(self.statemonitor)
            net.run(self.sliced_duration)

        sliced_values = self.criterion_object.get_values()
        combined_values = self.combine_sliced_values(sliced_values)
        values = self.criterion_object.normalize(combined_values)
        return values

    def get_statemonitor_values(self):
        if not self.use_gpu:
            return self.statemonitor.values
        else:
            return self.mf.get_statemonitor_values()
                      tau1=tau1,
                      tau2=tau2e,
                      )

model_eqs_i = Equations(eqs_string,
                      tau=taui,
                      tau1=tau1,
                      tau2=tau2i,
                      )


# Divide the neurons into excitatory and inhibitory ones
neurons_e = NeuronGroup(N=N_e,
                          model=model_eqs_e,
                          threshold=V_th,
                          reset=V_reset,
                          refractory=refr_period,
                          freeze = True,
                          method='Euler',
                          compile=True)

neurons_i = NeuronGroup(N=N_i,
                          model=model_eqs_i,
                          threshold=V_th,
                          reset=V_reset,
                          refractory=refr_period,
                          freeze = True,
                          method='Euler',
                          compile=True)


neurons_e.myu = np.random.uniform(myueMin, myueMax, N_e)
Exemple #47
0
    betah=1./(exp(-0.1/mV*(v+28*mV))+1)/ms : Hz

    dn/dt=5*(alphan*(1-n)-betan*n) : 1

    alphan=-0.01/mV*(v+34*mV)/(exp(-0.1/mV*(v+34*mV))-1)/ms : Hz

    betan=0.125*exp(-(v+44*mV)/(80*mV))/ms : Hz

    dgExc/dt = -gExc*(1./taue) : siemens

    dgInh/dt = -gInh*(1./taui) : siemens

    Iapp : amp

'''
neuron = NeuronGroup(len(inputcurrents), eqs, threshold=threshold, method='RK')
sim.add(neuron)

# Init conditions
neuron.v = -65*mV
neuron.Iapp = inputcurrents
neuron.h = 1

# Monitors
vmon = StateMonitor(neuron, 'v', record=True)
nmon = StateMonitor(neuron, 'n', record=True)
sim.add(vmon, nmon)

# Run
sim.run(duration, report='text')