def __init__(self, filterbank, targetvar, *args, **kwds): self.targetvar = targetvar self.filterbank = filterbank filterbank.buffer_init() # Sanitize the clock - does it have the right dt value? if 'clock' in kwds: if int(1/kwds['clock'].dt)!=int(filterbank.samplerate): raise ValueError('Clock should have 1/dt=samplerate') kwds['clock'] = Clock(dt=float(kwds['clock'].dt)*second) else: kwds['clock'] = Clock(dt=1*second/float(filterbank.samplerate)) buffersize = kwds.pop('buffersize', 32) if not isinstance(buffersize, int): buffersize = int(buffersize*self.samplerate) self.buffersize = buffersize self.buffer_pointer = buffersize self.buffer_start = -buffersize NeuronGroup.__init__(self, filterbank.nchannels, *args, **kwds) @network_operation(when=(self.clock, 'start')) def apply_filterbank_output(): if self.buffer_pointer>=self.buffersize: self.buffer_pointer = 0 self.buffer_start += self.buffersize self.buffer = self.filterbank.buffer_fetch(self.buffer_start, self.buffer_start+self.buffersize) setattr(self, targetvar, self.buffer[self.buffer_pointer, :]) self.buffer_pointer += 1 self.contained_objects.append(apply_filterbank_output)
def __init__(self, filterbank, targetvar, *args, **kwds): self.targetvar = targetvar self.filterbank = filterbank self.buffer = None filterbank.buffer_init() # Sanitize the clock - does it have the right dt value? if 'clock' in kwds: if int(1 / kwds['clock'].dt) != int(filterbank.samplerate): raise ValueError('Clock should have 1/dt=samplerate') kwds['clock'] = Clock(dt=float(kwds['clock'].dt) * second) else: kwds['clock'] = Clock(dt=1 * second / float(filterbank.samplerate)) buffersize = kwds.pop('buffersize', 32) if not isinstance(buffersize, int): buffersize = int(buffersize * self.samplerate) self.buffersize = buffersize self.buffer_pointer = buffersize self.buffer_start = -buffersize NeuronGroup.__init__(self, filterbank.nchannels, *args, **kwds) @network_operation(clock=self.clock, when='start') def apply_filterbank_output(): if self.buffer_pointer >= self.buffersize: self.buffer_pointer = 0 self.buffer_start += self.buffersize self.buffer = self.filterbank.buffer_fetch( self.buffer_start, self.buffer_start + self.buffersize) setattr(self, targetvar, self.buffer[self.buffer_pointer, :]) self.buffer_pointer += 1 self.contained_objects.append(apply_filterbank_output)
def __init__(self, morphology=None, model=None, threshold=None, refractory=False, reset=None, threshold_location=None, dt=None, clock=None, order=0, Cm=0.9 * uF / cm ** 2, Ri=150 * ohm * cm, name='spatialneuron*', dtype=None, namespace=None, method=('linear', 'exponential_euler', 'rk2', 'milstein')): # #### Prepare and validate equations if isinstance(model, basestring): model = Equations(model) if not isinstance(model, Equations): raise TypeError(('model has to be a string or an Equations ' 'object, is "%s" instead.') % type(model)) # Insert the threshold mechanism at the specified location if threshold_location is not None: if hasattr(threshold_location, '_indices'): # assuming this is a method threshold_location = threshold_location._indices() # for now, only a single compartment allowed if len(threshold_location) == 1: threshold_location = threshold_location[0] else: raise AttributeError(('Threshold can only be applied on a ' 'single location')) threshold = '(' + threshold + ') and (i == ' + str(threshold_location) + ')' # Check flags (we have point currents) model.check_flags({DIFFERENTIAL_EQUATION: ('point current',), PARAMETER: ('constant', 'shared', 'linked', 'point current'), SUBEXPRESSION: ('shared', 'point current')}) # Add the membrane potential model += Equations(''' v:volt # membrane potential ''') # Extract membrane equation if 'Im' in model: membrane_eq = model['Im'] # the membrane equation else: raise TypeError('The transmembrane current Im must be defined') # Insert point currents in the membrane equation for eq in model.itervalues(): if 'point current' in eq.flags: fail_for_dimension_mismatch(eq.unit, amp, "Point current " + eq.varname + " should be in amp") eq.flags.remove('point current') membrane_eq.expr = Expression( str(membrane_eq.expr.code) + '+' + eq.varname + '/area') ###### Process model equations (Im) to extract total conductance and the remaining current # Check conditional linearity with respect to v # Match to _A*v+_B var = sp.Symbol('v', real=True) wildcard = sp.Wild('_A', exclude=[var]) constant_wildcard = sp.Wild('_B', exclude=[var]) pattern = wildcard * var + constant_wildcard # Expand expressions in the membrane equation membrane_eq.type = DIFFERENTIAL_EQUATION for var, expr in model._get_substituted_expressions(): # this returns substituted expressions for diff eqs if var == 'Im': Im_expr = expr membrane_eq.type = SUBEXPRESSION # Factor out the variable s_expr = sp.collect(Im_expr.sympy_expr.expand(), var) matches = s_expr.match(pattern) if matches is None: raise TypeError, "The membrane current must be linear with respect to v" a, b = (matches[wildcard], matches[constant_wildcard]) # Extracts the total conductance from Im, and the remaining current minusa_str, b_str = sympy_to_str(-a), sympy_to_str(b) # Add correct units if necessary if minusa_str == '0': minusa_str += '*siemens/meter**2' if b_str == '0': b_str += '*amp/meter**2' gtot_str = "gtot__private=" + minusa_str + ": siemens/meter**2" I0_str = "I0__private=" + b_str + ": amp/meter**2" model += Equations(gtot_str + "\n" + I0_str) # Equations for morphology # TODO: check whether Cm and Ri are already in the equations # no: should be shared instead of constant # yes: should be constant (check) eqs_constants = Equations(""" diameter : meter (constant) length : meter (constant) x : meter (constant) y : meter (constant) z : meter (constant) distance : meter (constant) area : meter**2 (constant) Cm : farad/meter**2 (constant) Ri : ohm*meter (constant, shared) space_constant = (diameter/(4*Ri*gtot__private))**.5 : meter # Not so sure about the name ### Parameters and intermediate variables for solving the cable equation ab_star0 : siemens/meter**2 ab_plus0 : siemens/meter**2 ab_minus0 : siemens/meter**2 ab_star1 : siemens/meter**2 ab_plus1 : siemens/meter**2 ab_minus1 : siemens/meter**2 ab_star2 : siemens/meter**2 ab_plus2 : siemens/meter**2 ab_minus2 : siemens/meter**2 b_plus : siemens/meter**2 b_minus : siemens/meter**2 v_star : volt u_plus : 1 u_minus : 1 """) # Possibilities for the name: characteristic_length, electrotonic_length, length_constant, space_constant # Insert morphology self.morphology = morphology # Link morphology variables to neuron's state variables self.morphology_data = MorphologyData(len(morphology)) self.morphology.compress(self.morphology_data) NeuronGroup.__init__(self, len(morphology), model=model + eqs_constants, threshold=threshold, refractory=refractory, reset=reset, method=method, dt=dt, clock=clock, order=order, namespace=namespace, dtype=dtype, name=name) self.Cm = Cm self.Ri = Ri # TODO: View instead of copy for runtime? self.diameter_ = self.morphology_data.diameter self.distance_ = self.morphology_data.distance self.length_ = self.morphology_data.length self.area_ = self.morphology_data.area self.x_ = self.morphology_data.x self.y_ = self.morphology_data.y self.z_ = self.morphology_data.z # Performs numerical integration step self.add_attribute('diffusion_state_updater') self.diffusion_state_updater = SpatialStateUpdater(self, method, clock=self.clock, order=order) # Creation of contained_objects that do the work self.contained_objects.extend([self.diffusion_state_updater])
def __init__(self, morphology=None, model=None, threshold=None, refractory=False, reset=None, events=None, threshold_location=None, dt=None, clock=None, order=0, Cm=0.9 * uF / cm ** 2, Ri=150 * ohm * cm, name='spatialneuron*', dtype=None, namespace=None, method=('linear', 'exponential_euler', 'rk2', 'heun')): # #### Prepare and validate equations if isinstance(model, basestring): model = Equations(model) if not isinstance(model, Equations): raise TypeError(('model has to be a string or an Equations ' 'object, is "%s" instead.') % type(model)) # Insert the threshold mechanism at the specified location if threshold_location is not None: if hasattr(threshold_location, '_indices'): # assuming this is a method threshold_location = threshold_location._indices() # for now, only a single compartment allowed if len(threshold_location) == 1: threshold_location = threshold_location[0] else: raise AttributeError(('Threshold can only be applied on a ' 'single location')) threshold = '(' + threshold + ') and (i == ' + str(threshold_location) + ')' # Check flags (we have point currents) model.check_flags({DIFFERENTIAL_EQUATION: ('point current',), PARAMETER: ('constant', 'shared', 'linked', 'point current'), SUBEXPRESSION: ('shared', 'point current')}) # Add the membrane potential model += Equations(''' v:volt # membrane potential ''') # Extract membrane equation if 'Im' in model: membrane_eq = model['Im'] # the membrane equation else: raise TypeError('The transmembrane current Im must be defined') # Insert point currents in the membrane equation for eq in model.itervalues(): if 'point current' in eq.flags: fail_for_dimension_mismatch(eq.unit, amp, "Point current " + eq.varname + " should be in amp") eq.flags.remove('point current') membrane_eq.expr = Expression( str(membrane_eq.expr.code) + '+' + eq.varname + '/area') ###### Process model equations (Im) to extract total conductance and the remaining current # Check conditional linearity with respect to v # Match to _A*v+_B var = sp.Symbol('v', real=True) wildcard = sp.Wild('_A', exclude=[var]) constant_wildcard = sp.Wild('_B', exclude=[var]) pattern = wildcard * var + constant_wildcard # Expand expressions in the membrane equation membrane_eq.type = DIFFERENTIAL_EQUATION for var, expr in model.get_substituted_expressions(): if var == 'Im': Im_expr = expr membrane_eq.type = SUBEXPRESSION # Factor out the variable s_expr = sp.collect(str_to_sympy(Im_expr.code).expand(), var) matches = s_expr.match(pattern) if matches is None: raise TypeError, "The membrane current must be linear with respect to v" a, b = (matches[wildcard], matches[constant_wildcard]) # Extracts the total conductance from Im, and the remaining current minusa_str, b_str = sympy_to_str(-a), sympy_to_str(b) # Add correct units if necessary if minusa_str == '0': minusa_str += '*siemens/meter**2' if b_str == '0': b_str += '*amp/meter**2' gtot_str = "gtot__private=" + minusa_str + ": siemens/meter**2" I0_str = "I0__private=" + b_str + ": amp/meter**2" model += Equations(gtot_str + "\n" + I0_str) # Insert morphology (store a copy) self.morphology = copy.deepcopy(morphology) # Flatten the morphology self.flat_morphology = FlatMorphology(morphology) # Equations for morphology # TODO: check whether Cm and Ri are already in the equations # no: should be shared instead of constant # yes: should be constant (check) eqs_constants = Equations(""" length : meter (constant) distance : meter (constant) area : meter**2 (constant) volume : meter**3 diameter : meter (constant) Cm : farad/meter**2 (constant) Ri : ohm*meter (constant, shared) r_length_1 : meter (constant) r_length_2 : meter (constant) time_constant = Cm/gtot__private : second space_constant = (2/pi)**(1.0/3.0) * (area/(1/r_length_1 + 1/r_length_2))**(1.0/6.0) / (2*(Ri*gtot__private)**(1.0/2.0)) : meter """) if self.flat_morphology.has_coordinates: eqs_constants += Equations(''' x : meter (constant) y : meter (constant) z : meter (constant) ''') NeuronGroup.__init__(self, morphology.total_compartments, model=model + eqs_constants, threshold=threshold, refractory=refractory, reset=reset, events=events, method=method, dt=dt, clock=clock, order=order, namespace=namespace, dtype=dtype, name=name) # Parameters and intermediate variables for solving the cable equations # Note that some of these variables could have meaningful physical # units (e.g. _v_star is in volt, _I0_all is in amp/meter**2 etc.) but # since these variables should never be used in user code, we don't # assign them any units self.variables.add_arrays(['_ab_star0', '_ab_star1', '_ab_star2', '_a_minus0', '_a_minus1', '_a_minus2', '_a_plus0', '_a_plus1', '_a_plus2', '_b_plus', '_b_minus', '_v_star', '_u_plus', '_u_minus', # The following three are for solving the # three tridiag systems in parallel '_c1', '_c2', '_c3', # The following two are only necessary for # C code where we cannot deal with scalars # and arrays interchangeably: '_I0_all', '_gtot_all'], unit=1, size=self.N, read_only=True) self.Cm = Cm self.Ri = Ri # These explict assignments will load the morphology values from disk # in standalone mode self.distance_ = self.flat_morphology.distance self.length_ = self.flat_morphology.length self.area_ = self.flat_morphology.area self.diameter_ = self.flat_morphology.diameter self.r_length_1_ = self.flat_morphology.r_length_1 self.r_length_2_ = self.flat_morphology.r_length_2 if self.flat_morphology.has_coordinates: self.x_ = self.flat_morphology.x self.y_ = self.flat_morphology.y self.z_ = self.flat_morphology.z # Performs numerical integration step self.add_attribute('diffusion_state_updater') self.diffusion_state_updater = SpatialStateUpdater(self, method, clock=self.clock, order=order) # Creation of contained_objects that do the work self.contained_objects.extend([self.diffusion_state_updater])
def __init__(self, morphology=None, model=None, threshold=None, refractory=False, reset=None, threshold_location=None, dt=None, clock=None, order=0, Cm=0.9 * uF / cm**2, Ri=150 * ohm * cm, name='spatialneuron*', dtype=None, namespace=None, method=('linear', 'exponential_euler', 'rk2', 'heun')): # #### Prepare and validate equations if isinstance(model, basestring): model = Equations(model) if not isinstance(model, Equations): raise TypeError(('model has to be a string or an Equations ' 'object, is "%s" instead.') % type(model)) # Insert the threshold mechanism at the specified location if threshold_location is not None: if hasattr(threshold_location, '_indices'): # assuming this is a method threshold_location = threshold_location._indices() # for now, only a single compartment allowed if len(threshold_location) == 1: threshold_location = threshold_location[0] else: raise AttributeError(('Threshold can only be applied on a ' 'single location')) threshold = '(' + threshold + ') and (i == ' + str( threshold_location) + ')' # Check flags (we have point currents) model.check_flags({ DIFFERENTIAL_EQUATION: ('point current', ), PARAMETER: ('constant', 'shared', 'linked', 'point current'), SUBEXPRESSION: ('shared', 'point current') }) # Add the membrane potential model += Equations(''' v:volt # membrane potential ''') # Extract membrane equation if 'Im' in model: membrane_eq = model['Im'] # the membrane equation else: raise TypeError('The transmembrane current Im must be defined') # Insert point currents in the membrane equation for eq in model.itervalues(): if 'point current' in eq.flags: fail_for_dimension_mismatch( eq.unit, amp, "Point current " + eq.varname + " should be in amp") eq.flags.remove('point current') membrane_eq.expr = Expression( str(membrane_eq.expr.code) + '+' + eq.varname + '/area') ###### Process model equations (Im) to extract total conductance and the remaining current # Check conditional linearity with respect to v # Match to _A*v+_B var = sp.Symbol('v', real=True) wildcard = sp.Wild('_A', exclude=[var]) constant_wildcard = sp.Wild('_B', exclude=[var]) pattern = wildcard * var + constant_wildcard # Expand expressions in the membrane equation membrane_eq.type = DIFFERENTIAL_EQUATION for var, expr in model._get_substituted_expressions( ): # this returns substituted expressions for diff eqs if var == 'Im': Im_expr = expr membrane_eq.type = SUBEXPRESSION # Factor out the variable s_expr = sp.collect(Im_expr.sympy_expr.expand(), var) matches = s_expr.match(pattern) if matches is None: raise TypeError, "The membrane current must be linear with respect to v" a, b = (matches[wildcard], matches[constant_wildcard]) # Extracts the total conductance from Im, and the remaining current minusa_str, b_str = sympy_to_str(-a), sympy_to_str(b) # Add correct units if necessary if minusa_str == '0': minusa_str += '*siemens/meter**2' if b_str == '0': b_str += '*amp/meter**2' gtot_str = "gtot__private=" + minusa_str + ": siemens/meter**2" I0_str = "I0__private=" + b_str + ": amp/meter**2" model += Equations(gtot_str + "\n" + I0_str) # Equations for morphology # TODO: check whether Cm and Ri are already in the equations # no: should be shared instead of constant # yes: should be constant (check) eqs_constants = Equations(""" diameter : meter (constant) length : meter (constant) x : meter (constant) y : meter (constant) z : meter (constant) distance : meter (constant) area : meter**2 (constant) Cm : farad/meter**2 (constant) Ri : ohm*meter (constant, shared) space_constant = (diameter/(4*Ri*gtot__private))**.5 : meter # Not so sure about the name ### Parameters and intermediate variables for solving the cable equation ab_star0 : siemens/meter**2 ab_plus0 : siemens/meter**2 ab_minus0 : siemens/meter**2 ab_star1 : siemens/meter**2 ab_plus1 : siemens/meter**2 ab_minus1 : siemens/meter**2 ab_star2 : siemens/meter**2 ab_plus2 : siemens/meter**2 ab_minus2 : siemens/meter**2 b_plus : siemens/meter**2 b_minus : siemens/meter**2 v_star : volt u_plus : 1 u_minus : 1 # The following two are only necessary for C code where we cannot deal # with scalars and arrays interchangeably gtot_all : siemens/meter**2 I0_all : amp/meter**2 """) # Possibilities for the name: characteristic_length, electrotonic_length, length_constant, space_constant # Insert morphology self.morphology = morphology # Link morphology variables to neuron's state variables self.morphology_data = MorphologyData(len(morphology)) self.morphology.compress(self.morphology_data) NeuronGroup.__init__(self, len(morphology), model=model + eqs_constants, threshold=threshold, refractory=refractory, reset=reset, method=method, dt=dt, clock=clock, order=order, namespace=namespace, dtype=dtype, name=name) self.Cm = Cm self.Ri = Ri # TODO: View instead of copy for runtime? self.diameter_ = self.morphology_data.diameter self.distance_ = self.morphology_data.distance self.length_ = self.morphology_data.length self.area_ = self.morphology_data.area self.x_ = self.morphology_data.x self.y_ = self.morphology_data.y self.z_ = self.morphology_data.z # Performs numerical integration step self.add_attribute('diffusion_state_updater') self.diffusion_state_updater = SpatialStateUpdater(self, method, clock=self.clock, order=order) # Creation of contained_objects that do the work self.contained_objects.extend([self.diffusion_state_updater])
def __init__(self, morphology=None, model=None, threshold=None, refractory=False, reset=None, events=None, threshold_location=None, dt=None, clock=None, order=0, Cm=0.9 * uF / cm**2, Ri=150 * ohm * cm, name='spatialneuron*', dtype=None, namespace=None, method=('linear', 'exponential_euler', 'rk2', 'heun')): # #### Prepare and validate equations if isinstance(model, basestring): model = Equations(model) if not isinstance(model, Equations): raise TypeError(('model has to be a string or an Equations ' 'object, is "%s" instead.') % type(model)) # Insert the threshold mechanism at the specified location if threshold_location is not None: if hasattr(threshold_location, '_indices'): # assuming this is a method threshold_location = threshold_location._indices() # for now, only a single compartment allowed if len(threshold_location) == 1: threshold_location = threshold_location[0] else: raise AttributeError(('Threshold can only be applied on a ' 'single location')) threshold = '(' + threshold + ') and (i == ' + str( threshold_location) + ')' # Check flags (we have point currents) model.check_flags({ DIFFERENTIAL_EQUATION: ('point current', ), PARAMETER: ('constant', 'shared', 'linked', 'point current'), SUBEXPRESSION: ('shared', 'point current', 'constant over dt') }) #: The original equations as specified by the user (i.e. before #: inserting point-currents into the membrane equation, before adding #: all the internally used variables and constants, etc.). self.user_equations = model # Separate subexpressions depending whether they are considered to be # constant over a time step or not (this would also be done by the # NeuronGroup initializer later, but this would give incorrect results # for the linearity check) model, constant_over_dt = extract_constant_subexpressions(model) # Extract membrane equation if 'Im' in model: if len(model['Im'].flags): raise TypeError( 'Cannot specify any flags for the transmembrane ' 'current Im.') membrane_expr = model['Im'].expr # the membrane equation else: raise TypeError('The transmembrane current Im must be defined') model_equations = [] # Insert point currents in the membrane equation for eq in model.itervalues(): if eq.varname == 'Im': continue # ignore -- handled separately if 'point current' in eq.flags: fail_for_dimension_mismatch( eq.dim, amp, "Point current " + eq.varname + " should be in amp") membrane_expr = Expression( str(membrane_expr.code) + '+' + eq.varname + '/area') eq = SingleEquation( eq.type, eq.varname, eq.dim, expr=eq.expr, flags=list(set(eq.flags) - set(['point current']))) model_equations.append(eq) model_equations.append( SingleEquation(SUBEXPRESSION, 'Im', dimensions=(amp / meter**2).dim, expr=membrane_expr)) model_equations.append(SingleEquation(PARAMETER, 'v', volt.dim)) model = Equations(model_equations) ###### Process model equations (Im) to extract total conductance and the remaining current # Expand expressions in the membrane equation for var, expr in model.get_substituted_expressions( include_subexpressions=True): if var == 'Im': Im_expr = expr break else: raise AssertionError('Model equations did not contain Im!') # Differentiate Im with respect to v Im_sympy_exp = str_to_sympy(Im_expr.code) v_sympy = sp.Symbol('v', real=True) diffed = sp.diff(Im_sympy_exp, v_sympy) unevaled_derivatives = diffed.atoms(sp.Derivative) if len(unevaled_derivatives): raise TypeError( 'Cannot take the derivative of "{Im}" with respect ' 'to v.'.format(Im=Im_expr.code)) gtot_str = sympy_to_str(sp.simplify(-diffed)) I0_str = sympy_to_str(sp.simplify(Im_sympy_exp - diffed * v_sympy)) if gtot_str == '0': gtot_str += '*siemens/meter**2' if I0_str == '0': I0_str += '*amp/meter**2' gtot_str = "gtot__private=" + gtot_str + ": siemens/meter**2" I0_str = "I0__private=" + I0_str + ": amp/meter**2" model += Equations(gtot_str + "\n" + I0_str) # Insert morphology (store a copy) self.morphology = copy.deepcopy(morphology) # Flatten the morphology self.flat_morphology = FlatMorphology(morphology) # Equations for morphology # TODO: check whether Cm and Ri are already in the equations # no: should be shared instead of constant # yes: should be constant (check) eqs_constants = Equations(""" length : meter (constant) distance : meter (constant) area : meter**2 (constant) volume : meter**3 Ic : amp/meter**2 diameter : meter (constant) Cm : farad/meter**2 (constant) Ri : ohm*meter (constant, shared) r_length_1 : meter (constant) r_length_2 : meter (constant) time_constant = Cm/gtot__private : second space_constant = (2/pi)**(1.0/3.0) * (area/(1/r_length_1 + 1/r_length_2))**(1.0/6.0) / (2*(Ri*gtot__private)**(1.0/2.0)) : meter """) if self.flat_morphology.has_coordinates: eqs_constants += Equations(''' x : meter (constant) y : meter (constant) z : meter (constant) ''') NeuronGroup.__init__(self, morphology.total_compartments, model=model + eqs_constants, threshold=threshold, refractory=refractory, reset=reset, events=events, method=method, dt=dt, clock=clock, order=order, namespace=namespace, dtype=dtype, name=name) # Parameters and intermediate variables for solving the cable equations # Note that some of these variables could have meaningful physical # units (e.g. _v_star is in volt, _I0_all is in amp/meter**2 etc.) but # since these variables should never be used in user code, we don't # assign them any units self.variables.add_arrays( [ '_ab_star0', '_ab_star1', '_ab_star2', '_a_minus0', '_a_minus1', '_a_minus2', '_a_plus0', '_a_plus1', '_a_plus2', '_b_plus', '_b_minus', '_v_star', '_u_plus', '_u_minus', '_v_previous', # The following three are for solving the # three tridiag systems in parallel '_c1', '_c2', '_c3', # The following two are only necessary for # C code where we cannot deal with scalars # and arrays interchangeably: '_I0_all', '_gtot_all' ], size=self.N, read_only=True) self.Cm = Cm self.Ri = Ri # These explict assignments will load the morphology values from disk # in standalone mode self.distance_ = self.flat_morphology.distance self.length_ = self.flat_morphology.length self.area_ = self.flat_morphology.area self.diameter_ = self.flat_morphology.diameter self.r_length_1_ = self.flat_morphology.r_length_1 self.r_length_2_ = self.flat_morphology.r_length_2 if self.flat_morphology.has_coordinates: self.x_ = self.flat_morphology.x self.y_ = self.flat_morphology.y self.z_ = self.flat_morphology.z # Performs numerical integration step self.add_attribute('diffusion_state_updater') self.diffusion_state_updater = SpatialStateUpdater(self, method, clock=self.clock, order=order) # Update v after the gating variables to obtain consistent Ic and Im self.diffusion_state_updater.order = 1 # Creation of contained_objects that do the work self.contained_objects.extend([self.diffusion_state_updater]) if len(constant_over_dt): self.subexpression_updater = SubexpressionUpdater( self, constant_over_dt) self.contained_objects.append(self.subexpression_updater)
def __init__(self, morphology=None, model=None, threshold=None, refractory=False, reset=None, events=None, threshold_location=None, dt=None, clock=None, order=0, Cm=0.9 * uF / cm ** 2, Ri=150 * ohm * cm, name='spatialneuron*', dtype=None, namespace=None, method=('exact', 'exponential_euler', 'rk2', 'heun'), method_options=None): # #### Prepare and validate equations if isinstance(model, basestring): model = Equations(model) if not isinstance(model, Equations): raise TypeError(('model has to be a string or an Equations ' 'object, is "%s" instead.') % type(model)) # Insert the threshold mechanism at the specified location if threshold_location is not None: if hasattr(threshold_location, '_indices'): # assuming this is a method threshold_location = threshold_location._indices() # for now, only a single compartment allowed if len(threshold_location) == 1: threshold_location = threshold_location[0] else: raise AttributeError(('Threshold can only be applied on a ' 'single location')) threshold = '(' + threshold + ') and (i == ' + str(threshold_location) + ')' # Check flags (we have point currents) model.check_flags({DIFFERENTIAL_EQUATION: ('point current',), PARAMETER: ('constant', 'shared', 'linked', 'point current'), SUBEXPRESSION: ('shared', 'point current', 'constant over dt')}) #: The original equations as specified by the user (i.e. before #: inserting point-currents into the membrane equation, before adding #: all the internally used variables and constants, etc.). self.user_equations = model # Separate subexpressions depending whether they are considered to be # constant over a time step or not (this would also be done by the # NeuronGroup initializer later, but this would give incorrect results # for the linearity check) model, constant_over_dt = extract_constant_subexpressions(model) # Extract membrane equation if 'Im' in model: if len(model['Im'].flags): raise TypeError('Cannot specify any flags for the transmembrane ' 'current Im.') membrane_expr = model['Im'].expr # the membrane equation else: raise TypeError('The transmembrane current Im must be defined') model_equations = [] # Insert point currents in the membrane equation for eq in model.itervalues(): if eq.varname == 'Im': continue # ignore -- handled separately if 'point current' in eq.flags: fail_for_dimension_mismatch(eq.dim, amp, "Point current " + eq.varname + " should be in amp") membrane_expr = Expression( str(membrane_expr.code) + '+' + eq.varname + '/area') eq = SingleEquation(eq.type, eq.varname, eq.dim, expr=eq.expr, flags=list(set(eq.flags)-set(['point current']))) model_equations.append(eq) model_equations.append(SingleEquation(SUBEXPRESSION, 'Im', dimensions=(amp/meter**2).dim, expr=membrane_expr)) model_equations.append(SingleEquation(PARAMETER, 'v', volt.dim)) model = Equations(model_equations) ###### Process model equations (Im) to extract total conductance and the remaining current # Expand expressions in the membrane equation for var, expr in model.get_substituted_expressions(include_subexpressions=True): if var == 'Im': Im_expr = expr break else: raise AssertionError('Model equations did not contain Im!') # Differentiate Im with respect to v Im_sympy_exp = str_to_sympy(Im_expr.code) v_sympy = sp.Symbol('v', real=True) diffed = sp.diff(Im_sympy_exp, v_sympy) unevaled_derivatives = diffed.atoms(sp.Derivative) if len(unevaled_derivatives): raise TypeError('Cannot take the derivative of "{Im}" with respect ' 'to v.'.format(Im=Im_expr.code)) gtot_str = sympy_to_str(sp.simplify(-diffed)) I0_str = sympy_to_str(sp.simplify(Im_sympy_exp - diffed*v_sympy)) if gtot_str == '0': gtot_str += '*siemens/meter**2' if I0_str == '0': I0_str += '*amp/meter**2' gtot_str = "gtot__private=" + gtot_str + ": siemens/meter**2" I0_str = "I0__private=" + I0_str + ": amp/meter**2" model += Equations(gtot_str + "\n" + I0_str) # Insert morphology (store a copy) self.morphology = copy.deepcopy(morphology) # Flatten the morphology self.flat_morphology = FlatMorphology(morphology) # Equations for morphology # TODO: check whether Cm and Ri are already in the equations # no: should be shared instead of constant # yes: should be constant (check) eqs_constants = Equations(""" length : meter (constant) distance : meter (constant) area : meter**2 (constant) volume : meter**3 Ic : amp/meter**2 diameter : meter (constant) Cm : farad/meter**2 (constant) Ri : ohm*meter (constant, shared) r_length_1 : meter (constant) r_length_2 : meter (constant) time_constant = Cm/gtot__private : second space_constant = (2/pi)**(1.0/3.0) * (area/(1/r_length_1 + 1/r_length_2))**(1.0/6.0) / (2*(Ri*gtot__private)**(1.0/2.0)) : meter """) if self.flat_morphology.has_coordinates: eqs_constants += Equations(''' x : meter (constant) y : meter (constant) z : meter (constant) ''') NeuronGroup.__init__(self, morphology.total_compartments, model=model + eqs_constants, method_options=method_options, threshold=threshold, refractory=refractory, reset=reset, events=events, method=method, dt=dt, clock=clock, order=order, namespace=namespace, dtype=dtype, name=name) # Parameters and intermediate variables for solving the cable equations # Note that some of these variables could have meaningful physical # units (e.g. _v_star is in volt, _I0_all is in amp/meter**2 etc.) but # since these variables should never be used in user code, we don't # assign them any units self.variables.add_arrays(['_ab_star0', '_ab_star1', '_ab_star2', '_b_plus', '_b_minus', '_v_star', '_u_plus', '_u_minus', '_v_previous', '_c', # The following two are only necessary for # C code where we cannot deal with scalars # and arrays interchangeably: '_I0_all', '_gtot_all'], size=self.N, read_only=True) self.Cm = Cm self.Ri = Ri # These explict assignments will load the morphology values from disk # in standalone mode self.distance_ = self.flat_morphology.distance self.length_ = self.flat_morphology.length self.area_ = self.flat_morphology.area self.diameter_ = self.flat_morphology.diameter self.r_length_1_ = self.flat_morphology.r_length_1 self.r_length_2_ = self.flat_morphology.r_length_2 if self.flat_morphology.has_coordinates: self.x_ = self.flat_morphology.x self.y_ = self.flat_morphology.y self.z_ = self.flat_morphology.z # Performs numerical integration step self.add_attribute('diffusion_state_updater') self.diffusion_state_updater = SpatialStateUpdater(self, method, clock=self.clock, order=order) # Update v after the gating variables to obtain consistent Ic and Im self.diffusion_state_updater.order = 1 # Creation of contained_objects that do the work self.contained_objects.extend([self.diffusion_state_updater]) if len(constant_over_dt): self.subexpression_updater = SubexpressionUpdater(self, constant_over_dt) self.contained_objects.append(self.subexpression_updater)
def __init__(self, morphology=None, model=None, threshold=None, refractory=False, reset=None, events=None, threshold_location=None, dt=None, clock=None, order=0, Cm=0.9 * uF / cm**2, Ri=150 * ohm * cm, name='spatialneuron*', dtype=None, namespace=None, method=('linear', 'exponential_euler', 'rk2', 'heun')): # #### Prepare and validate equations if isinstance(model, basestring): model = Equations(model) if not isinstance(model, Equations): raise TypeError(('model has to be a string or an Equations ' 'object, is "%s" instead.') % type(model)) # Insert the threshold mechanism at the specified location if threshold_location is not None: if hasattr(threshold_location, '_indices'): # assuming this is a method threshold_location = threshold_location._indices() # for now, only a single compartment allowed if len(threshold_location) == 1: threshold_location = threshold_location[0] else: raise AttributeError(('Threshold can only be applied on a ' 'single location')) threshold = '(' + threshold + ') and (i == ' + str( threshold_location) + ')' # Check flags (we have point currents) model.check_flags({ DIFFERENTIAL_EQUATION: ('point current', ), PARAMETER: ('constant', 'shared', 'linked', 'point current'), SUBEXPRESSION: ('shared', 'point current') }) # Add the membrane potential model += Equations(''' v:volt # membrane potential ''') # Extract membrane equation if 'Im' in model: membrane_eq = model['Im'] # the membrane equation else: raise TypeError('The transmembrane current Im must be defined') # Insert point currents in the membrane equation for eq in model.itervalues(): if 'point current' in eq.flags: fail_for_dimension_mismatch( eq.unit, amp, "Point current " + eq.varname + " should be in amp") eq.flags.remove('point current') membrane_eq.expr = Expression( str(membrane_eq.expr.code) + '+' + eq.varname + '/area') ###### Process model equations (Im) to extract total conductance and the remaining current # Check conditional linearity with respect to v # Match to _A*v+_B var = sp.Symbol('v', real=True) wildcard = sp.Wild('_A', exclude=[var]) constant_wildcard = sp.Wild('_B', exclude=[var]) pattern = wildcard * var + constant_wildcard # Expand expressions in the membrane equation membrane_eq.type = DIFFERENTIAL_EQUATION for var, expr in model.get_substituted_expressions(): if var == 'Im': Im_expr = expr membrane_eq.type = SUBEXPRESSION # Factor out the variable s_expr = sp.collect(str_to_sympy(Im_expr.code).expand(), var) matches = s_expr.match(pattern) if matches is None: raise TypeError, "The membrane current must be linear with respect to v" a, b = (matches[wildcard], matches[constant_wildcard]) # Extracts the total conductance from Im, and the remaining current minusa_str, b_str = sympy_to_str(-a), sympy_to_str(b) # Add correct units if necessary if minusa_str == '0': minusa_str += '*siemens/meter**2' if b_str == '0': b_str += '*amp/meter**2' gtot_str = "gtot__private=" + minusa_str + ": siemens/meter**2" I0_str = "I0__private=" + b_str + ": amp/meter**2" model += Equations(gtot_str + "\n" + I0_str) # Insert morphology (store a copy) self.morphology = copy.deepcopy(morphology) # Flatten the morphology self.flat_morphology = FlatMorphology(morphology) # Equations for morphology # TODO: check whether Cm and Ri are already in the equations # no: should be shared instead of constant # yes: should be constant (check) eqs_constants = Equations(""" length : meter (constant) distance : meter (constant) area : meter**2 (constant) volume : meter**3 diameter : meter (constant) Cm : farad/meter**2 (constant) Ri : ohm*meter (constant, shared) r_length_1 : meter (constant) r_length_2 : meter (constant) time_constant = Cm/gtot__private : second space_constant = (2/pi)**(1.0/3.0) * (area/(1/r_length_1 + 1/r_length_2))**(1.0/6.0) / (2*(Ri*gtot__private)**(1.0/2.0)) : meter """) if self.flat_morphology.has_coordinates: eqs_constants += Equations(''' x : meter (constant) y : meter (constant) z : meter (constant) ''') NeuronGroup.__init__(self, morphology.total_compartments, model=model + eqs_constants, threshold=threshold, refractory=refractory, reset=reset, events=events, method=method, dt=dt, clock=clock, order=order, namespace=namespace, dtype=dtype, name=name) # Parameters and intermediate variables for solving the cable equations # Note that some of these variables could have meaningful physical # units (e.g. _v_star is in volt, _I0_all is in amp/meter**2 etc.) but # since these variables should never be used in user code, we don't # assign them any units self.variables.add_arrays( [ '_ab_star0', '_ab_star1', '_ab_star2', '_a_minus0', '_a_minus1', '_a_minus2', '_a_plus0', '_a_plus1', '_a_plus2', '_b_plus', '_b_minus', '_v_star', '_u_plus', '_u_minus', # The following three are for solving the # three tridiag systems in parallel '_c1', '_c2', '_c3', # The following two are only necessary for # C code where we cannot deal with scalars # and arrays interchangeably: '_I0_all', '_gtot_all' ], unit=1, size=self.N, read_only=True) self.Cm = Cm self.Ri = Ri # These explict assignments will load the morphology values from disk # in standalone mode self.distance_ = self.flat_morphology.distance self.length_ = self.flat_morphology.length self.area_ = self.flat_morphology.area self.diameter_ = self.flat_morphology.diameter self.r_length_1_ = self.flat_morphology.r_length_1 self.r_length_2_ = self.flat_morphology.r_length_2 if self.flat_morphology.has_coordinates: self.x_ = self.flat_morphology.x self.y_ = self.flat_morphology.y self.z_ = self.flat_morphology.z # Performs numerical integration step self.add_attribute('diffusion_state_updater') self.diffusion_state_updater = SpatialStateUpdater(self, method, clock=self.clock, order=order) # Creation of contained_objects that do the work self.contained_objects.extend([self.diffusion_state_updater])