def plot_raster3d():
     ax = Axes3D(fig)
     y = np.array(spike_monitor.i) % num_neuron
     z = np.array(spike_monitor.i) // num_neuron
     x = spike_monitor.t / ms
     ax.plot(x,
             y,
             z,
             c="k",
             marker=".",
             markersize=2,
             linewidth=0,
             alpha=0.7)
     ax.set_xlabel('Time')
     ax.set_xlim(0, 500)
     ax.set_ylabel('1st dimension')
     ax.set_ylim(0, num_neuron)
     ax.set_zlabel('2nd dimension')
     ax.set_zlim(0, num_neuron)
     ax.view_init(30, -70)
     plt.savefig(num_trial + 'raster_2d.png', quality=95)
def test_correct_solution_2D(M):
    """
    Function to test if solution is correct, returning detailed results.
    M is a 2D matrix, i.e. cell-wise competition is assumed to have a winner.
    """

    # Check if matrix is valid size.
    M = np.array(M)
    nrow, ncol = M.shape
    if nrow != ncol:
        raise ValueError('Matrix is not square size!')
    if not np.sqrt(nrow).is_integer():
        raise ValueError('Matrix length is not a square number!')

    unique_vals = np.arange(nrow) + 1

    # Test each row.
    row_correct = np.array(
        [np.array_equal(np.unique(M[i, :]), unique_vals) for i in range(nrow)])

    # Test each column.
    col_correct = np.array(
        [np.array_equal(np.unique(M[:, j]), unique_vals) for j in range(ncol)])

    # Test each sub-rectangle.
    nsrow, nscol = int(np.sqrt(nrow)), int(np.sqrt(ncol))
    sub_correct = [[
        np.array_equal(
            np.unique(M[(nsrow * i):(nsrow * (i + 1)),
                        (nscol * j):(nscol * (j + 1))]), unique_vals)
        for j in range(nscol)
    ] for i in range(nsrow)]
    sub_correct = np.array(sub_correct)

    # Collest test results.
    test_res = {'rows': row_correct, 'cols': col_correct, 'subs': sub_correct}

    return test_res
Exemple #3
0
    def _extract_state_monitor(self, monitor):

        self.f_set(record_variables=monitor.record_variables)
        self.f_set(record=monitor.record)
        self.f_set(when=monitor.when)
        self.f_set(source=str(monitor.source))
        self.f_set(name=monitor.name)

        times = np.array(monitor.t[:])
        if len(times) > 0:
            self.f_set(t=times)

            for varname in monitor.record_variables:
                val = getattr(monitor, varname)
                self.f_set(**{varname: val})
Exemple #4
0
    def _extract_state_monitor(self, monitor):

        self.f_set(record_variables=monitor.record_variables)
        self.f_set(record=monitor.record)
        self.f_set(when=monitor.when)
        self.f_set(source=str(monitor.source))
        self.f_set(name=monitor.name)

        times=np.array(monitor.t[:])
        if len(times) > 0:
            self.f_set(t=times)

            for varname in monitor.record_variables:
                val = getattr(monitor, varname)
                self.f_set(**{varname: val})
Exemple #5
0
 def experimenter_bias(self):
     """ Shows the statistics of the average recording across all experimenters """
     # extracting rat id list
     id_list = [rat_id for rat_id in self.data.data_vars]
     # extracting experimenters name list - conversion for set and back to list for uniqueness
     exp_name_list = [self.data[id].experimenter_name for id in id_list]
     # extracting mean, average and std
     descriptors = [(self.data[id].mean(), self.data[id].std(),
                     self.data[id].median()) for id in id_list]
     # creating dataFrame variables
     avrg = np.array(descriptors)[:, 0]
     std = np.array(descriptors)[:, 1]
     med = np.array(descriptors)[:, 2]
     # dataframe instance
     plt.figure()
     df = pd.DataFrame({
         'average': avrg,
         'std': std,
         'median': med
     },
                       index=exp_name_list)
     # barplot
     df.plot.bar(rot=0)
     plt.show()
Exemple #6
0
    f = h5py.File(STDP_WEIGHTS_FILE)
    weights = f["weights"][:]
    f.close()
    e_synapses.w = weights * mV
else:
    print("Initating new weights")
    # adjust initiated weights to force output spike
    e_synapses.w = 'rand()**4 * 2*mV'

# mon = StateMonitor(neurons, 'V', record=0)

spike_mon = SpikeMonitor(neurons)

run(sim_time, report='stdout')

weights = np.array(e_synapses.w / mV)

f = h5py.File(STDP_WEIGHTS_FILE, 'w')
f["weights"] = weights
f.close()

fig, ax = plt.subplots()
ax.hist(e_synapses.w / mV, bins=50)
ax.set(xlabel='$w_e$ (mV)')

fig, ax = plt.subplots()
ax.vlines(np.arange(n_repetitions * 10) * repeat_every / second,
          0,
          100,
          color='gray',
          alpha=0.5)
def plot_sudoku(M,
                pM=None,
                cM=None,
                add_errors=None,
                remove_lbls=True,
                title=None,
                fname=None):
    """
    Plot Sudoku matrix, optionally adding errors.

    M: a complete or partial solution.
    pM: a partial solution, if provided, numbers are colored by differently.
    cM: confidence matrix to scale size of numbers with.
    """

    # Init.
    M = np.array(M)
    if pM is not None:
        pM = np.array(pM)
    if cM is not None:
        cM = np.array(cM)

    nrow, ncol = M.shape
    nsrow, nscol = int(np.sqrt(nrow)), int(np.sqrt(ncol))

    if add_errors is None:
        # Add errors if matrix is complete.
        add_errors = not np.any(np.isnan(M))

    # Init figure.
    base_cell_size = 1
    ndigits_fac = 1 if nrow < 10 else 1.1
    size = ndigits_fac * nrow * base_cell_size
    fig = plt.figure(figsize=(size, size))
    ax = plt.axes()

    # Plot matrix.
    sns.heatmap(M,
                vmin=0,
                vmax=0,
                cmap='OrRd',
                cbar=False,
                square=True,
                linecolor='k',
                linewidth=1,
                annot=False,
                ax=ax)

    # Add cell numbers.
    for i, j in sudoku_util.all_ij_pairs(nrow):
        lbl = int(M[i, j]) if not np.isnan(M[i, j]) else ''
        # Color: is cell present in partial solution?
        c = 'k' if pM is None else 'g' if not np.isnan(pM[i, j]) else 'b'
        # Size: confidence level of cell.
        s = 30 if cM is None else 10 + 20 * cM[i, j]
        # Plot cell label.
        ax.text(j + 0.5,
                nrow - i - 0.5,
                lbl,
                va='center',
                ha='center',
                weight='bold',
                fontsize=s,
                color=c)

    # Remove tick labels.
    if remove_lbls:
        ax.tick_params(labelbottom='off')
        ax.tick_params(labelleft='off')

    # Embolden border lines.
    kws = {'linewidth': 6, 'color': 'k'}
    for i in range(nsrow + 1):
        ax.plot([0, ncol], [i * nsrow, i * nsrow], **kws)
    for j in range(nscol + 1):
        ax.plot([j * nscol, j * nscol], [0, ncol], **kws)

    # Highlight errors.
    if add_errors:
        col, alpha = 'r', 1. / 3
        test_res = sudoku_util.test_correct_solution_2D(M)
        # Rows.
        for i in np.where(np.logical_not(test_res['rows']))[0]:
            irow = nrow - i - 1
            rect = mpl.patches.Rectangle((0, irow),
                                         ncol,
                                         1,
                                         alpha=alpha,
                                         fc=col)
            ax.add_patch(rect)
        # Columns.
        for j in np.where(np.logical_not(test_res['cols']))[0]:
            rect = mpl.patches.Rectangle((j, 0), 1, nrow, alpha=alpha, fc=col)
            ax.add_patch(rect)
        # Sub-squares.
        for i, j in np.argwhere(np.logical_not(test_res['subs'])):
            isrow = nsrow - i - 1
            rect = mpl.patches.Rectangle((j * nscol, isrow * nsrow),
                                         nscol,
                                         nsrow,
                                         alpha=alpha,
                                         fc=col)
            ax.add_patch(rect)

    # Add title.
    if title is not None:
        ax.set_title(title, fontsize='xx-large')

    # Save figure.
    if fname is not None:
        fig.savefig(fname, dpi=300, bbox_inches='tight')

    return ax
    def __init__(
        self,
        weights: np.ndarray,
        weights_in: np.ndarray,
        dt: float = 0.1 * ms,
        noise_std: float = 0 * mV,
        refractory=0 * ms,
        neuron_params=None,
        syn_params=None,
        integrator_name: str = "rk4",
        name: str = "unnamed",
    ):
        """
        Construct a spiking recurrent layer with IAF neurons, with a Brian2 back-end

        :param weights:             np.array NxN weight matrix
        :param weights_in:             np.array 1xN input weight matrix.

        :param refractory: float Refractory period after each spike. Default: 0ms

        :param neuron_params:    dict Parameters to over overwriting neuron defaulst

        :param syn_params:    dict Parameters to over overwriting synapse defaulst

        :param integrator_name:   str Integrator to use for simulation. Default: 'exact'

        :param name:         str Name for the layer. Default: 'unnamed'
        """
        warn("RecDynapseBrian: This layer is deprecated.")

        # - Call super constructor
        super().__init__(
            weights=weights,
            dt=np.asarray(dt),
            noise_std=np.asarray(noise_std),
            name=name,
        )

        # - Input weights must be provided
        assert weights_in is not None, "weights_in must be provided."

        # - Warn that nosie is not implemented
        if noise_std != 0:
            print("WARNING: Noise is currently not implemented in this layer.")

        # - Set up spike source to receive spiking input
        self._input_generator = b2.SpikeGeneratorGroup(
            self.size, [0], [0 * second], dt=np.asarray(dt) * second)

        # - Handle unit of dt: if no unit provided, assume it is in seconds
        dt = np.asscalar(np.array(dt)) * second

        ### --- Neurons

        # - Set up reservoir neurons
        self._neuron_group = teiliNG(
            N=self.size,
            equation_builder=teiliDPIEqts(num_inputs=2),
            name="reservoir_neurons",
            refractory=refractory,
            method=integrator_name,
            dt=dt,
        )

        # - Overwrite default neuron parameters
        if neuron_params is not None:
            self._neuron_group.set_params(
                dict(dTeiliNeuronParam, **neuron_params))
        else:
            self._neuron_group.set_params(dTeiliNeuronParam)

        ### --- Synapses

        # - Add recurrent synapses (all-to-all)
        self._rec_synapses = teiliSyn(
            self._neuron_group,
            self._neuron_group,
            equation_builder=teiliDPISynEqts,
            method=integrator_name,
            dt=dt,
            name="reservoir_recurrent_synapses",
        )
        self._rec_synapses.connect()

        # - Add source -> reservoir synapses (one-to-one)
        self._inp_synapses = teiliSyn(
            self._input_generator,
            self._neuron_group,
            equation_builder=teiliDPISynEqts,
            method=integrator_name,
            dt=np.asarray(dt) * second,
            name="receiver_synapses",
        )
        # Each spike generator neuron corresponds to one reservoir neuron
        self._inp_synapses.connect("i==j")

        # - Overwrite default synapse parameters
        if syn_params is not None:
            self._rec_synapses.set_params(neuron_params)
            self._inp_synapses.set_params(neuron_params)

        # - Add spike monitor to record layer outputs
        self._spike_monitor = b2.SpikeMonitor(self._neuron_group,
                                              record=True,
                                              name="layer_spikes")

        # - Call Network constructor
        self._net = b2.Network(
            self._neuron_group,
            self._rec_synapses,
            self._input_generator,
            self._inp_synapses,
            self._spike_monitor,
            name="recurrent_spiking_layer",
        )

        # - Record neuron / synapse parameters
        # automatically sets weights  via setters
        self.weights = weights
        self.weights_in = weights_in

        # - Store "reset" state
        self._net.store("reset")
Exemple #9
0
IMG_SIZE = 784
bin_size = 2 * ms
p = 1 * Hz * bin_size  # Firing rate per neuron: 1Hz
total = 50 * second  # Total length of our stimulus of one img
pattern_length = 250 * ms
repeat_every = pattern_length * 4
n_repetitions = int(total / repeat_every)

f = h5py.File(MNIST_TRAIN_HDF5_FILE, 'r')
train_img = f["img"][:]
train_label = f["label"][:]
f.close()

N = 100

global_indices = np.array([])
global_times = np.array([])

start_time = time.time()

for i in range(N):
    spikes = np.random.rand(IMG_SIZE, int(total / bin_size)) < p
    # create zero pattern first for we only fill nonzero position after
    pattern = np.zeros([IMG_SIZE, int(pattern_length / bin_size)])
    img_flatten = np.array(train_img[i]).flatten()

    # This parameter is gotten using several experiments
    rates = img_flatten / 255 * 125 * Hz

    inp = PoissonGroup(IMG_SIZE, rates)
    spikeMonitor = SpikeMonitor(inp)