def test_gec() -> None:
    """GEC 2: Test Vectors for SEC 1, section 2

    http://read.pudn.com/downloads168/doc/772358/TestVectorsforSEC%201-gec2.pdf
    """
    # 2.1.1 Scheme setup
    ec = CURVES["secp160r1"]
    hf = sha1

    # 2.1.2 Key Deployment for U
    dU = 971761939728640320549601132085879836204587084162
    dU, QU = dsa.gen_keys(dU, ec)
    assert (format(dU,
                   str(ec.n_size) +
                   "x") == "aa374ffc3ce144e6b073307972cb6d57b2a4e982")
    assert QU == (
        466448783855397898016055842232266600516272889280,
        1110706324081757720403272427311003102474457754220,
    )
    assert (bytes_from_point(
        QU, ec).hex() == "0251b4496fecc406ed0e75a24a3c03206251419dc0")

    # 2.1.3 Signing Operation for U
    msg = b"abc"
    k = 702232148019446860144825009548118511996283736794
    lower_s = False
    sig = dsa.sign_(reduce_to_hlen(msg, hf), dU, k, lower_s, ec, hf)
    assert sig.r == 0xCE2873E5BE449563391FEB47DDCBA2DC16379191
    assert sig.s == 0x3480EC1371A091A464B31CE47DF0CB8AA2D98B54
    assert sig.ec == ec

    # 2.1.4 Verifying Operation for V
    dsa.assert_as_valid(msg, QU, sig, lower_s, hf)
    assert dsa.verify(msg, QU, sig, lower_s, hf)
def test_pub_key_recovery() -> None:

    ec = CURVES["secp112r2"]

    q = 0x10
    Q = mult(q, ec.G, ec)

    msg = "Satoshi Nakamoto".encode()
    sig = dsa.sign(msg, q, ec=ec)
    dsa.assert_as_valid(msg, Q, sig)
    assert dsa.verify(msg, Q, sig)

    keys = dsa.recover_pub_keys(msg, sig)
    assert len(keys) == 4
    assert Q in keys
    for Q in keys:
        assert dsa.verify(msg, Q, sig)
def test_sign_to_contract_dsa() -> None:
    commit_msg = "to be committed".encode()
    msg = "to be signed".encode()

    lower_s = True
    for hf in (sha256, sha1):
        for ec in (secp256k1, CURVES["secp160r1"]):
            prv_key, pub_key = dsa.gen_keys(ec=ec)
            nonce = None
            dsa_sig, receipt = dsa_commit_sign(commit_msg, msg, prv_key, nonce,
                                               ec, hf)
            dsa.assert_as_valid(msg, pub_key, dsa_sig, lower_s, hf)
            assert dsa_verify_commit(commit_msg, receipt, msg, pub_key,
                                     dsa_sig, lower_s, hf)

            nonce = 1 + secrets.randbelow(ec.n - 1)
            dsa_sig, R = dsa_commit_sign(commit_msg, msg, prv_key, nonce, ec,
                                         hf)
            dsa.assert_as_valid(msg, pub_key, dsa_sig, lower_s, hf)
            assert dsa_verify_commit(commit_msg, R, msg, pub_key, dsa_sig,
                                     lower_s, hf)
Exemple #4
0
def test_rfc6979_tv() -> None:

    fname = "rfc6979.json"
    filename = path.join(path.dirname(__file__), "_data", fname)
    with open(filename, "r") as file_:
        test_dict = json.load(file_)

    lower_s = False
    for ec_name in test_dict:
        ec = CURVES[ec_name]
        test_vectors = test_dict[ec_name]
        for x, x_U, y_U, hf, msg, k, r, s in test_vectors:
            x = int(x, 16)
            msg = msg.encode()
            m = reduce_to_hlen(msg, hf=getattr(hashlib, hf))
            # test RFC6979 implementation
            k2 = rfc6979_(m, x, ec, getattr(hashlib, hf))
            assert int(k, 16) == k2
            # test RFC6979 usage in DSA
            sig = dsa.sign_(m, x, k2, lower_s, ec=ec, hf=getattr(hashlib, hf))
            assert int(r, 16) == sig.r
            assert int(s, 16) == sig.s
            # test that RFC6979 is the default nonce for DSA
            sig = dsa.sign_(m,
                            x,
                            None,
                            lower_s,
                            ec=ec,
                            hf=getattr(hashlib, hf))
            assert int(r, 16) == sig.r
            assert int(s, 16) == sig.s
            # test key-pair coherence
            U = mult(x, ec.G, ec)
            assert int(x_U, 16), int(y_U, 16) == U
            # test signature validity
            dsa.assert_as_valid(msg, U, sig, lower_s, getattr(hashlib, hf))
def test_ledger() -> None:
    """Hybrid ECDSA Bitcoin message signature generated by Ledger"""

    mnemonic = (
        "barely sun snack this snack relief pipe attack disease boss enlist lawsuit"
    )

    # non-standard leading 31 in DER serialization
    derivation_path = "m/1"
    msg = b"\xfb\xa3\x1f\x8cd\x85\xe29#K\xb3{\xfd\xa7<?\x95oL\xee\x19\xb2'oh\xa7]\xd9A\xfeU\xd8"
    dersig_hex_str = "3144022012ec0c174936c2a46dc657252340b2e6e6dd8c31dd059b6f9f33a90c21af2fba022030e6305b3ccf88009d419bf7651afcfcc0a30898b93ae9de9aa6ac03cf8ec56b"

    # pub_key derivation
    rprv = bip39.mxprv_from_mnemonic(mnemonic)
    xprv = bip32.derive(rprv, derivation_path)

    # the actual message being signed
    magic_msg = magic_message(msg)

    # save key_id and patch dersig
    dersig = bytes.fromhex(dersig_hex_str)
    key_id = dersig[0]
    dsa_sig = dsa.Sig.parse(b"\x30" + dersig[1:])

    # ECDSA signature verification of the patched dersig
    dsa.assert_as_valid(magic_msg, xprv, dsa_sig)
    assert dsa.verify(magic_msg, xprv, dsa_sig)

    # compressed address
    addr = b58.p2pkh(xprv)

    # equivalent Bitcoin Message Signature
    rec_flag = 27 + 4 + (key_id & 0x01)
    bms_sig = bms.Sig(rec_flag, dsa_sig)

    # Bitcoin Message Signature verification
    bms.assert_as_valid(msg, addr, bms_sig)
    assert bms.verify(msg, addr, bms_sig)
    assert not bms.verify(magic_msg, addr, bms_sig)

    bms.sign(msg, xprv)

    # standard leading 30 in DER serialization
    derivation_path = "m/0/0"
    msg_str = "hello world".encode()
    dersig_hex_str = "3045022100967dac3262b4686e89638c8219c5761017f05cd87a855edf034f4a3ec6b59d3d0220108a4ef9682b71a45979d8c75c393382d9ccb8eb561d73b8c5fc0b87a47e7d27"

    # pub_key derivation
    rprv = bip39.mxprv_from_mnemonic(mnemonic)
    xprv = bip32.derive(rprv, derivation_path)

    # the actual message being signed
    magic_msg = magic_message(msg_str)

    # save key_id and patch dersig
    dersig = bytes.fromhex(dersig_hex_str)
    key_id = dersig[0]
    dsa_sig = dsa.Sig.parse(b"\x30" + dersig[1:])

    # ECDSA signature verification of the patched dersig
    dsa.assert_as_valid(magic_msg, xprv, dsa_sig, lower_s=True)
    assert dsa.verify(magic_msg, xprv, dsa_sig)

    # compressed address
    addr = b58.p2pkh(xprv)

    # equivalent Bitcoin Message Signature
    rec_flag = 27 + 4 + (key_id & 0x01)
    bms_sig = bms.Sig(rec_flag, dsa_sig)

    # Bitcoin Message Signature verification
    bms.assert_as_valid(msg_str, addr, bms_sig)
    assert bms.verify(msg_str, addr, bms_sig)
    assert not bms.verify(magic_msg, addr, bms_sig)
def test_signature() -> None:
    msg = "Satoshi Nakamoto".encode()

    q, Q = dsa.gen_keys(0x1)
    sig = dsa.sign(msg, q)
    dsa.assert_as_valid(msg, Q, sig)
    assert dsa.verify(msg, Q, sig)
    assert sig == dsa.Sig.parse(sig.serialize())
    assert sig == dsa.Sig.parse(sig.serialize().hex())

    # https://bitcointalk.org/index.php?topic=285142.40
    # Deterministic Usage of DSA and ECDSA (RFC 6979)
    r = 0x934B1EA10A4B3C1757E2B0C017D0B6143CE3C9A7E6A4A49860D7A6AB210EE3D8
    s = 0x2442CE9D2B916064108014783E923EC36B49743E2FFA1C4496F01A512AAFD9E5
    assert sig.r == r
    assert sig.s in (s, sig.ec.n - s)

    # malleability
    malleated_sig = dsa.Sig(sig.r, sig.ec.n - sig.s)
    assert dsa.verify(msg, Q, malleated_sig, lower_s=False)

    keys = dsa.recover_pub_keys(msg, sig)
    assert len(keys) == 2
    assert Q in keys

    keys = dsa.recover_pub_keys(msg, sig.serialize())
    assert len(keys) == 2
    assert Q in keys

    msg_fake = "Craig Wright".encode()
    assert not dsa.verify(msg_fake, Q, sig)
    err_msg = "signature verification failed"
    with pytest.raises(BTClibRuntimeError, match=err_msg):
        dsa.assert_as_valid(msg_fake, Q, sig)

    _, Q_fake = dsa.gen_keys()
    assert not dsa.verify(msg, Q_fake, sig)
    err_msg = "signature verification failed"
    with pytest.raises(BTClibRuntimeError, match=err_msg):
        dsa.assert_as_valid(msg, Q_fake, sig)

    err_msg = "not a valid public key: "
    with pytest.raises(BTClibValueError, match=err_msg):
        dsa.assert_as_valid(msg, INF, sig)

    sig_invalid = dsa.Sig(sig.ec.p, sig.s, check_validity=False)
    assert not dsa.verify(msg, Q, sig_invalid)
    err_msg = "scalar r not in 1..n-1: "
    with pytest.raises(BTClibValueError, match=err_msg):
        dsa.assert_as_valid(msg, Q, sig_invalid)

    sig_invalid = dsa.Sig(sig.r, sig.ec.p, check_validity=False)
    assert not dsa.verify(msg, Q, sig_invalid)
    err_msg = "scalar s not in 1..n-1: "
    with pytest.raises(BTClibValueError, match=err_msg):
        dsa.assert_as_valid(msg, Q, sig_invalid)

    err_msg = "private key not in 1..n-1: "
    with pytest.raises(BTClibValueError, match=err_msg):
        dsa.sign(msg, 0)

    # ephemeral key not in 1..n-1
    err_msg = "private key not in 1..n-1: "
    with pytest.raises(BTClibValueError, match=err_msg):
        dsa.sign_(reduce_to_hlen(msg), q, 0)
    with pytest.raises(BTClibValueError, match=err_msg):
        dsa.sign_(reduce_to_hlen(msg), q, sig.ec.n)
Exemple #7
0
def test_sign_input_type() -> None:
    msg = "Satoshi Nakamoto".encode()
    q, Q = dsa.gen_keys(0x1)
    sig = dsa.sign(msg, q)
    dsa.assert_as_valid(msg, Q, sig)
    dsa.assert_as_valid(msg, Q, sig.serialize())