def create_bubble(temp_construct): figure = bubbleplot(dataset=temp_construct, x_column='deaths', y_column='confirmed', bubble_column='region', time_column='date', size_column='confirmed', color_column='region', x_title="deaths", y_title="Confirmed", title='Covid-19 Spread by top regions.', x_logscale=False, y_logscale=False, scale_bubble=1, height=650) figure.update return figure
def update_graph(value): #filter con = df[df['pc_name'] == value] total = con.groupby(['partyabbre', 'year']).sum()['totvotpoll'].reset_index(name='Total') ttitle = 'Peopel\'s choice in ' + value #plot figure = bubbleplot(dataset=total, x_column='year', y_column='Total', bubble_column='partyabbre', size_column='Total', color_column='partyabbre', x_title="Years", y_title="Total Number of Votes", title=ttitle, x_range=['1977', '2014'], marker_opacity=0.6) return figure
def BubblePlot(): # 气泡图 data = load_data() figure = bubbleplot(dataset=data, x_column='SepalLengthCm', y_column='PetalLengthCm', z_column='SepalWidthCm', bubble_column='Id', size_column='PetalWidthCm', color_column='Species', x_title='SepalLength(Cm)', y_title='PetalLength(Cm)', z_title='SepalWidth(Cm)', title='IRIS Visualization', x_logscale=False, scale_bubble=0.1, height=600) iplot(figure, config={'scrollzoom': True}) plt.show() return
def animated_bubble_chart(year_range, month_range, si_range, area_range, map_size_radio_items, hours_range, country_list): tmp = filter_events(year_range, month_range, si_range, area_range, map_size_radio_items, hours_range, country_list) tmp = tmp[['event_id', 'event_year', 'country', 'meanPre', 'size', 'area']].groupby( ['event_id', 'event_year', 'country']).sum(['meanPre', 'size', 'area']).reset_index() tmp['event_year'] = pd.to_datetime(tmp['event_year'], format='%Y') tmp3 = pd.DataFrame() for country in list(tmp.country.unique()): tmp2 = tmp[tmp['country'] == country] tmp2 = tmp2.append({'event_year': tmp['event_year'].min(), 'meanPre': 0, 'size': 0, 'area': 0}, ignore_index=True) tmp2 = tmp2.append({'event_year': tmp['event_year'].max(), 'meanPre': 0, 'size': 0, 'area': 0}, ignore_index=True) tmp2 = tmp2.groupby(pd.Grouper(key='event_year', freq='Y')).sum(['size']).reset_index() tmp2 = tmp2.fillna(0) tmp2['country'] = country tmp3 = tmp3.append(tmp2) tmp = tmp3.reset_index(drop=True) tmp['event_year'] = tmp['event_year'].dt.year tmp['Country_Name'] = 'Other' tmp.loc[tmp['country'] == 'IT', 'Country_Name'] = 'Italy' tmp.loc[tmp['country'] == 'DE', 'Country_Name'] = 'Germany' tmp.loc[tmp['country'] == 'PL', 'Country_Name'] = 'Poland' tmp.loc[tmp['country'] == 'CZ', 'Country_Name'] = 'Czech Republic' tmp.loc[tmp['country'] == 'TN', 'Country_Name'] = 'Tunesia' tmp = tmp[tmp['country'] != 'INT'] figure = bubbleplot(dataset=tmp, x_column='area', y_column='meanPre', bubble_column='country', time_column='event_year', size_column='size', color_column='Country_Name', x_title="Total Area", y_title="Total Precipitation", title='Heavy Rain Events in selected Countries') return figure
#%% #filter the dataframe according to u_input traces = plotly.graph_objs.Scatter(x=acum_text[:10]['word'], y=acum_text[:10]['count'], mode='lines') layout = plotly.graph_objs.Layout(xaxis=dict( tickvals=acum_text[:10]['word'].unique())) fig = plotly.graph_objs.Figure(data=traces, layout=layout) plotly.offline.plot(fig) #%% figure = bubbleplot(dataset=acum_text, x_column='count', y_column='count', bubble_column='count', size_column='count', color_column='word', x_title="Palabras", y_title="Repeticiones", title='Palabras en la constitucion', x_logscale=True, scale_bubble=3, height=650) plot(figure, filename="holi.html")
# In[46]: # Visaulizing the clusters with respect to economy, corruption, gdp, rank and their scores from bubbly.bubbly import bubbleplot figure = bubbleplot( dataset=happy_df_cluster, x_column='GDP per capita', y_column='Perceptions of corruption', bubble_column='Country or region', color_column='cluster', z_column='Healthy life expectancy', size_column='Score', x_title="GDP per capita", y_title="Corruption", z_title="Life Expectancy", title= 'Clusters based Impact of Economy, Corruption and Life expectancy on Happiness Scores of Nations', colorbar_title='Cluster', marker_opacity=1, colorscale='Portland', scale_bubble=0.8, height=650) iplot(figure, config={'scrollzoom': True}) # In[47]: # Visualizing the clusters geographically data = dict(type='choropleth',
#在total1加入老年人口比率、人口密度及都市化程度的欄位 total1.insert(3, column="老年人口比率(%)", value=round(((total1['老年人口數'] / total1['總人口數']) * 100), 2)) total1.insert(5, column='人口密度', value=round(total1['總人口數'] / total1['面積(Km²)'], 2)) total1.insert(6, column='都市化程度', value=round(np.log(total1['人口密度']), 2)) #畫出新北市各區都市化程度與老年人口比相關泡泡圖 figure = bubbleplot(dataset=total1, x_column='都市化程度', y_column='老年人口比率(%)', bubble_column='行政區', size_column='老年人口數', color_column='行政區', x_title='都市化程度(以人口密度取自然對數為都市化指標)', y_title='老年人口比', title='新北市各區都市化程度與老年人口比相關泡泡圖', x_logscale=True, scale_bubble=1, height=600) plot(figure, config={'scrollzoom': True}) #依照泡泡圖的都市化程度結果對行政區分組 total1.insert(0, column='行政區1', value=total1['行政區']) total1 = total1.set_index('行政區') total1 = total1.rename(columns={'行政區1': '行政區'}) #g1組:平溪、雙溪、坪林、貢寮、石碇、烏來 g1 = total1.ix[['平溪區', '雙溪區', '坪林區', '貢寮區', '石碇區', '烏來區']] #g2組:瑞芳、三芝、石門、三峽、金山、萬里、八里 g2 = total1.ix[['三芝區', '石門區', '三峽區', '金山區', '萬里區', '八里區', '瑞芳區']]
data.head() # describing the data data.describe() profile = pandas_profiling.ProfileReport(data) profile import warnings warnings.filterwarnings('ignore') figure = bubbleplot(dataset=data, x_column='trestbps', y_column='chol', bubble_column='sex', time_column='age', size_column='oldpeak', color_column='sex', x_title="Resting Blood Pressure", y_title="Cholestrol", title='BP vs Chol. vs Age vs Sex vs Heart Rate', x_logscale=False, scale_bubble=3, height=650) py.iplot(figure, config={'scrollzoom': True}) # making a heat map plt.rcParams['figure.figsize'] = (20, 15) plt.style.use('ggplot') sns.heatmap(data.corr(), annot=True, cmap='Wistia') plt.title('Heatmap for the Dataset', fontsize=20)
fig = ff.create_distplot(pk_list, group_labels, bin_size=5) fig['layout'].update(title='Distribution of All Pokemon Stats') py.iplot(fig, filename='distplot', validate=False) plotly.offline.plot(fig, filename="plotly_5.html") ############################################################################### ### Plotly Visual 6 ########################################################### ############################################################################### from bubbly.bubbly import bubbleplot df_bb = pd.read_csv('suicide_data.csv') df_bb = df_bb.sort_values(by=['year']) df_bb['rate'] = df_bb['suicides_no'] / df_bb['population'] figure = bubbleplot( dataset=df_bb, x_column='population', y_column='suicides_no', bubble_column='country', time_column='year', size_column='suicides_no', color_column='age', x_title="Population", y_title="Suicides Number", title='Suicides/Population Bubble Plot by Age Groups 1979-2016', x_logscale=True, scale_bubble=3, height=650) py.iplot(figure, filename='nbplot', validate=False) plotly.offline.plot(figure, filename="plotly_6.html") ###############################################################################
# Checking if there is any null values left SS['suicides'] = SS['suicides'].astype(int) SS['population'] = SS['population'].astype(int) # DATA VISUALIZATION # In[11]: import warnings warnings.filterwarnings('ignore') figure = bubbleplot(dataset = SS, x_column = 'suicides', y_column = 'population', bubble_column = 'country', color_column = 'country', x_title = 'Number of Suicides', y_title = 'Population', title = 'Population and Suicides', x_logscale = False, scale_bubble= 1, height = 550) py.iplot(figure, config = {'scrollzom' : True}) # In this plot, regions such as Africa and Asia are high as compared to U.S. and Europe # In[12]: # Visualization of the different countries distribution plt.style.use('seaborn-dark') plt.rcParams['figure.figsize'] = (15, 9)
marvel['FIRST APPEARANCE'].fillna(marvel['FIRST APPEARANCE'].mode()[0], inplace=True) marvel['Year'].fillna(marvel['Year'].mode()[0], inplace=True) import warnings warnings.filterwarnings('ignore') dc['YEAR'] = dc['YEAR'].astype(int) dc['APPEARANCES'] = dc['APPEARANCES'].astype(int) figure = bubbleplot(dataset=marvel, x_column='APPEARANCES', y_column='Year', bubble_column='ALIGN', size_column='APPEARANCES', color_column='ALIGN', y_title="Appearances", x_title="Year", title='Year VS ALIGNMENT VS APPEARANCES', x_logscale=False, scale_bubble=3, height=650) py.iplot(figure, config={'scrollzoom': True}) plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = (20, 10) plt.subplot(2, 1, 1) sns.violinplot(dc['ID'], dc['YEAR'], hue=dc['ALIGN'], palette='PuRd') plt.xlabel(' ') plt.title('DC', fontsize=30)
]) data.shape data.head(25) profile = pandas_profiling.ProfileReport(data) profile award_names = { 'Best Director': 1, 'Best Actor': 2, 'Best Supporting Actor': 3, 'Best Actress': 4, 'Best Supporting Actress': 5 } data['awards'] = data.award.map(award_names) data.columns data.head() visualization = bubbleplot(data, x_column='awards', y_column='_trusted_judgments', bubble_column='race_ethnicity', time_column='year_of_award') py.iplot(visualization, config={'scrollzoom': True}) pd.crosstab([data.year_of_award], data._trusted_judgments)
import plotly.offline as py from plotly.offline import init_notebook_mode, iplot import plotly.graph_objs as go import Clean as cl data = pd.read_csv("europe.csv") # Following are the codes for various bubbleplot generated using iplot # The only thing changing is the column names and their values. figure = bubbleplot(dataset=data, x_column='gdp', y_column='prct_job_satis_high', bubble_column='country', size_column='total_pop', color_column='country', x_title="GDP", y_title="Job Satisfaction", title='GDP vs Job vs Population', x_logscale=True, scale_bubble=3, height=650) iplot(figure) figure = bubbleplot(dataset=data, x_column='prct_life_satis_high', y_column='prct_env_satis_high', bubble_column='country', size_column='gdp', color_column='country', x_title="Life Satisfaction", y_title="Environment Satisfaction",