def test_load_data(self): from build import load_data res = load_data() self.assertEqual(13, res['# Summer']['Afghanistan']) self.assertEqual(152, res['Silver']['Australia'])
def test_get_points(self): from build import get_points, load_data res = load_data() res = get_points(res) self.assertEqual(2, res['Afghanistan']) self.assertEqual(130, res['Argentina']) self.assertEqual(923, res['Australia']) self.assertEqual(569, res['Austria']) self.assertEqual(276, res['Belgium'])
def main(): parser = OptionParser() opt = parser.parse_args() filename = opt.filename step = opt.step epochs = opt.epochs x_train, y_train, x_val, y_val, x_test, y_test, gt_test, max_data, min_data = load_data( filename, step) opt.max_data = max_data opt.min_data = min_data opt.train_len = x_train.shape[1] opt.val_len = x_val.shape[1] - x_train.shape[1] opt.test_len = x_test.shape[1] - x_val.shape[1] lstm = LSTM(1, 50, 1) sfm = SFM(1, 50, 20, 1) net = sfm train_function = train_sfm test_function = test_sfm if opt.net not in ["lstm", "sfm"]: raise NameError("Undefined net!!") if opt.net == "lstm": net = lstm train_function = train_lstm test_function = test print("Using net: %s" % (opt.net)) if opt.train: train_function(net, x_train, y_train, epochs=epochs) if opt.test: test_function(net, x_test, y_test, opt)
type=str, default='../dataset/data.npy') # visualization parser.add_argument('-v', '--visualization', type=distutils.util.strtobool, default='false') args = parser.parse_args() step = args.step global_start_time = time.time() print '> Loading data... ' data_file = args.data_file X_train, y_train, X_val, y_val, X_test, y_test, gt_test, max_data, min_data = build.load_data( data_file, step) test_len = X_test.shape[1] - X_val.shape[1] print 'test length:', test_len print '> Data Loaded. Compiling...' #dimension of hidden states if step == 1: hidden_dim = 10 elif step == 3: hidden_dim = 50 elif step == 5: hidden_dim = 50 else: raise Exception( "Don't have the model pretrained with the n-step prediction.") #number of frequencies
import build as b df = b.load_data() print(df) print(b.first_country(df)) print(b.gold_medal(df)) print(b.biggest_difference_in_gold_medal(df)) p = b.get_points(df) print(p) print(b.k_means(df))
def test_biggest_difference_in_gold_medal(self): from build import biggest_difference_in_gold_medal, load_data res = load_data() res = biggest_difference_in_gold_medal(res) self.assertEqual('United States', res)
def test_gold_medal(self): from build import gold_medal, load_data res = load_data() res = gold_medal(res) self.assertEqual('United States', res)
def test_first_country(self): from build import first_country, load_data res = load_data() res = first_country(res) self.assertEqual(13, res["# Summer"])