def run(input_path, output_path, remvoe_columns): """ This functions removes specified column from input """ meta = {"Remove Columns": remvoe_columns} proccesor = Process(meta) df = ioutil.read_parquet(input_path) result = proccesor.run(df) ioutil.save_parquet(result, output_path)
def prepare_input(): df = ioutil.read_parquet("../dstest/outputs/stargan/") results = [] for index in range(len(df)): results.append([[0, 0, 0, 1, 0]]) df.insert(len(df.columns), "c", results, True) print(df.columns) ioutil.save_parquet(df, "outputs/stargan/model_input", True) return df
def run(input_path, output_path, tensor_column): """ This functions removes specified column from input """ meta = {"Tensor Column": tensor_column} proccesor = Process(meta) df = ioutil.read_parquet(input_path) result = proccesor.run(df) #result = result[['image','Result']] # ioutil.save_parquet(result, output_path, True) ioutil.save_parquet1(result, output_path, True)
def run(input_path, meta_path, output_path, file_name, prob_col): """ read """ meta = { "Category File Name": file_name, "Probability Column Name": prob_col } proccesor = Process(meta_path, meta) df = ioutil.read_parquet(input_path) result = proccesor.run(df) ioutil.save_parquet(result, output_path, True)
def run(input_path, output_path, image_column, target_column, target_datauri_column, target_image_size): """ This functions read base64 encoded images from df. Transform to format required by model input. """ meta = { "Image Column": image_column, "Target Column": target_column, "Target DataURI Column": target_datauri_column, "Target Image Size": target_image_size } proccesor = PreProcess(meta) df = ioutil.read_parquet(input_path) result = proccesor.run(df) ioutil.save_parquet(result, output_path)
def run(input_path, meta_path, output_path, file_name, prob_col, append_category_column_to_output): """ read """ meta = { CATEGORY_FILE_NAME_KEY: file_name, PROBABILITY_COLUMN_NAME_KEY: prob_col, APPEND_CATEGORY_COLUMN_TO_OUTPUT_KEY: append_category_column_to_output } proccesor = Process(meta_path, meta) df = ioutil.read_parquet(input_path) result = proccesor.run(df) print(result) ioutil.save_parquet(result, output_path, True)
#df = pd.DataFrame() #df.insert(len(df.columns), 'x', batch_xs.tolist(), True) columns = [f"x.{i}" for i in range(784)] #columns = ['x']*784 df = pd.DataFrame(data=batch_xs, columns=columns, dtype=np.float64) names = [ "fixed acidity", "volatile acidity", "citric acid", "residual sugar", "chlorides", "free sulfur dioxide", "total sulfur dioxide", "density", "pH", "sulphates", "alcohol" ] data = [[7, 0.27, 0.36, 20.7, 0.045, 45, 170, 1.001, 3, 0.45, 8.8]] df1 = pd.DataFrame(data=data, columns=names) df = pd.concat([df, df1], axis=1) #df.to_parquet("test.parquet") #df.to_csv("test.csv") return df # python -m dstest.tensorflow.mnist_test if __name__ == '__main__': # df = prepare_input() df = ioutil.read_parquet("../dstest/outputs/mnist/") print(df.columns) test_tensor(df) out = test_builtin(df) print(out.columns) print(out)
def prepare_input(): df = ioutil.read_parquet("../dstest/outputs/mnist/") print(df.columns) return df
return result def prepare_input(): df = ioutil.read_parquet("../dstest/outputs/stargan/") results = [] for index in range(len(df)): results.append([[0, 0, 0, 1, 0]]) df.insert(len(df.columns), "c", results, True) print(df.columns) ioutil.save_parquet(df, "outputs/stargan/model_input", True) return df def test(model_path): df = prepare_input() out = test_builtin(model_path, df) ioutil.save_parquet(out, "outputs/stargan/model_output", True) print(out.columns) print(out) print(out["0"].shape) # python -m dstest.pytorch.stargan if __name__ == '__main__': # model_path = "model/stargan/" # test(model_path) out = ioutil.read_parquet("outputs/stargan/model_output") print(out.columns) #print(out["0"][0])