def main(argv): parser = ArgumentParser(argv[0], description=__doc__) parser.add_argument('input', type=str) parser.add_argument('output', type=str, nargs='+') parser.add_argument('--filter', '-s', type=int, default=0) parser.add_argument( '--fps', '-f', type=float, default=100., help='Up- or downsample data to match this sampling rate (100 fps).') parser.add_argument('--verbosity', '-v', type=int, default=1) args = parser.parse_args(argv[1:]) # load data data = load_data(args.input) # preprocess data data = preprocess(data, fps=args.fps, filter=args.filter if args.filter > 0 else None, verbosity=args.verbosity) for filepath in args.output: if filepath.lower().endswith('.mat'): # store in MATLAB format savemat(filepath, convert({'data': data})) else: with open(filepath, 'w') as handle: dump(data, handle, protocol=2) return 0
def extract_spikes_alt(roiattrs): """ Infer approximate spike rates """ print "\nrunning spike extraction" import c2s frameRate = 25 if 'corr_traces' in roiattrs.keys(): trace_type = 'corr_traces' else: trace_type = 'traces' data = [{'calcium':np.array([i]),'fps': frameRate} for i in roiattrs[trace_type]] spkt = c2s.predict(c2s.preprocess(data),verbosity=0) nROIs = len(roiattrs['idxs']) cFrames = np.array(roiattrs['traces']).shape[1] spk_traces = np.zeros([nROIs,cFrames]) spk_long = [] for i in range(nROIs): spk_traces[i] = np.mean(spkt[i]['predictions'].reshape(-1,4),axis=1) spk_long.append(spkt[i]['predictions']) roiattrs['spike_inf'] = spk_traces roiattrs['spike_long'] = np.squeeze(np.array(spk_long)) return roiattrs
def spike_traces(self, X, fps): try: import c2s except: warn( "c2s was not found. You won't be able to populate ExtracSpikes" ) assert self.fetch1[ 'language'] == 'python', "This tuple cannot be computed in python." if self.fetch1['spike_method'] == 3: N = len(X) for i, trace in enumerate(X): print('Predicting trace %i/%i' % (i + 1, N)) tr0 = np.array(trace.pop('trace').squeeze()) start = notnan(tr0) end = notnan(tr0, len(tr0) - 1, increment=-1) trace['calcium'] = np.atleast_2d(tr0[start:end + 1]) trace['fps'] = fps data = c2s.preprocess([trace], fps=fps) data = c2s.predict(data, verbosity=0) tr0[start:end + 1] = data[0].pop('predictions') data[0]['rate_trace'] = tr0.T data[0].pop('calcium') data[0].pop('fps') yield data[0]
def main(argv): parser = ArgumentParser(argv[0], description=__doc__) parser.add_argument('input', type=str) parser.add_argument('output', type=str, nargs='+') parser.add_argument('--filter', '-s', type=int, default=0) parser.add_argument('--fps', '-f', type=float, default=100., help='Up- or downsample data to match this sampling rate (100 fps).' ) parser.add_argument('--verbosity', '-v', type=int, default=1) args = parser.parse_args(argv[1:]) # load data data = load_data(args.input) # preprocess data data = preprocess( data, fps=args.fps, filter=args.filter if args.filter > 0 else None, verbosity=args.verbosity) for filepath in args.output: if filepath.lower().endswith('.mat'): # store in MATLAB format savemat(filepath, {'data': data}) else: with open(filepath, 'w') as handle: dump(data, handle, protocol=2) return 0
def main(argv): parser = ArgumentParser(argv[0], description=__doc__) parser.add_argument('dataset', type=str) parser.add_argument('output', type=str, nargs='+') parser.add_argument('--model', '-m', type=str, default='') parser.add_argument( '--preprocess', '-p', type=int, default=0, help= 'If you haven\'t already applied `preprocess` to the data, set to 1 (default: 0).' ) parser.add_argument('--verbosity', '-v', type=int, default=1) args = parser.parse_args(argv[1:]) experiment = Experiment() # load data data = load_data(args.dataset) if args.preprocess: # preprocess data data = preprocess(data, args.verbosity) if args.model: # load training results results = Experiment(args.model)['models'] else: # use default model results = None # predict firing rates data = predict(data, results, verbosity=args.verbosity) # remove data except predictions for entry in data: if 'spikes' in entry: del entry['spikes'] if 'spike_times' in entry: del entry['spike_times'] del entry['calcium'] for filepath in args.output: if filepath.lower().endswith('.mat'): # store in MATLAB format savemat(filepath, {'data': data}) else: with open(filepath, 'w') as handle: dump(data, handle, protocol=2) return 0
def main(argv): parser = ArgumentParser(argv[0], description=__doc__) parser.add_argument('dataset', type=str) parser.add_argument('output', type=str, nargs='+') parser.add_argument('--model', '-m', type=str, default='') parser.add_argument('--preprocess', '-p', type=int, default=0, help='If you haven\'t already applied `preprocess` to the data, set to 1 (default: 0).') parser.add_argument('--verbosity', '-v', type=int, default=1) args = parser.parse_args(argv[1:]) experiment = Experiment() # load data data = load_data(args.dataset) if args.preprocess: # preprocess data data = preprocess(data, args.verbosity) if args.model: # load training results results = Experiment(args.model)['models'] else: # use default model results = None # predict firing rates data = predict(data, results, verbosity=args.verbosity) # remove data except predictions for entry in data: if 'spikes' in entry: del entry['spikes'] if 'spike_times' in entry: del entry['spike_times'] del entry['calcium'] for filepath in args.output: if filepath.lower().endswith('.mat'): # store in MATLAB format savemat(filepath, {'data': data}) else: with open(filepath, 'w') as handle: dump(data, handle, protocol=2) return 0
def infer_spikes(self, X, dt, trace_name='ca_trace'): assert self.fetch1['language'] == 'python', "This tuple cannot be computed in python." fps = 1 / dt spike_rates = [] N = len(X) for i, trace in enumerate(X): print('Predicting trace %i/%i' % (i+1,N)) trace['calcium'] = trace.pop(trace_name).T trace['fps'] = fps data = c2s.preprocess([trace], fps=fps) data = c2s.predict(data, verbosity=0) data[0]['spike_trace'] = data[0].pop('predictions').T data[0].pop('calcium') data[0].pop('fps') spike_rates.append(data[0]) return spike_rates
def infer_spikes(self, X, dt, trace_name='ca_trace'): assert self.fetch1[ 'language'] == 'python', "This tuple cannot be computed in python." fps = 1 / dt spike_rates = [] N = len(X) for i, trace in enumerate(X): print('Predicting trace %i/%i' % (i + 1, N)) trace['calcium'] = trace.pop(trace_name).T trace['fps'] = fps data = c2s.preprocess([trace], fps=fps) data = c2s.predict(data, verbosity=0) data[0]['spike_trace'] = data[0].pop('predictions').T data[0].pop('calcium') data[0].pop('fps') spike_rates.append(data[0]) return spike_rates
def main(argv): parser = ArgumentParser(argv[0], description=__doc__) parser.add_argument('dataset', type=str, nargs='+') parser.add_argument('output', type=str) parser.add_argument('--num_components', '-c', type=int, default=3) parser.add_argument('--num_features', '-f', type=int, default=2) parser.add_argument('--num_models', '-m', type=int, default=4) parser.add_argument('--keep_all', '-k', type=int, default=1) parser.add_argument('--finetune', '-n', type=int, default=0) parser.add_argument('--num_valid', '-s', type=int, default=0) parser.add_argument('--var_explained', '-e', type=float, default=95.) parser.add_argument('--window_length', '-w', type=float, default=1000.) parser.add_argument('--regularize', '-r', type=float, default=0.) parser.add_argument('--preprocess', '-p', type=int, default=0) parser.add_argument('--verbosity', '-v', type=int, default=1) args, _ = parser.parse_known_args(argv[1:]) experiment = Experiment() # load data data = [] for dataset in args.dataset: data = data + load_data(dataset) # preprocess data if args.preprocess: data = preprocess(data) # list of all cells if 'cell_num' in data[0]: # several trials/entries may belong to the same cell cells = unique([entry['cell_num'] for entry in data]) else: # one cell corresponds to one trial/entry cells = range(len(data)) for i in cells: data[i]['cell_num'] = i for i in cells: data_train = [entry for entry in data if entry['cell_num'] != i] data_test = [entry for entry in data if entry['cell_num'] == i] if args.verbosity > 0: print 'Test cell: {0}'.format(i) # train on all cells but cell i results = train( data=data_train, num_valid=args.num_valid, num_models=args.num_models, var_explained=args.var_explained, window_length=args.window_length, keep_all=args.keep_all, finetune=args.finetune, model_parameters={ 'num_components': args.num_components, 'num_features': args.num_features}, training_parameters={ 'verbosity': 0}, regularize=args.regularize, verbosity=1) if args.verbosity > 0: print 'Predicting...' # predict responses of cell i predictions = predict(data_test, results, verbosity=0) for entry1, entry2 in zip(data_test, predictions): entry1['predictions'] = entry2['predictions'] # remove data except predictions for entry in data: if 'spikes' in entry: del entry['spikes'] if 'spike_times' in entry: del entry['spike_times'] del entry['calcium'] # save results if args.output.lower().endswith('.mat'): savemat(args.output, convert({'data': data})) elif args.output.lower().endswith('.xpck'): experiment['args'] = args experiment['data'] = data experiment.save(args.output) else: with open(args.output, 'w') as handle: dump(data, handle, protocol=2) return 0
def main(argv): parser = ArgumentParser(argv[0], description=__doc__) parser.add_argument('dataset', type=str, nargs='+') parser.add_argument('output', type=str) parser.add_argument('--num_components', '-c', type=int, default=3) parser.add_argument('--num_features', '-f', type=int, default=2) parser.add_argument('--num_models', '-m', type=int, default=4) parser.add_argument('--keep_all', '-k', type=int, default=1) parser.add_argument('--finetune', '-n', type=int, default=0) parser.add_argument('--num_valid', '-s', type=int, default=0) parser.add_argument('--var_explained', '-e', type=float, default=95.) parser.add_argument('--window_length', '-w', type=float, default=1000.) parser.add_argument('--regularize', '-r', type=float, default=0.) parser.add_argument('--preprocess', '-p', type=int, default=0) parser.add_argument('--verbosity', '-v', type=int, default=1) args, _ = parser.parse_known_args(argv[1:]) experiment = Experiment() # load data data = [] for dataset in args.dataset: data = data + load_data(dataset) # preprocess data if args.preprocess: data = preprocess(data) # list of all cells if 'cell_num' in data[0]: # several trials/entries may belong to the same cell cells = unique([entry['cell_num'] for entry in data]) else: # one cell corresponds to one trial/entry cells = range(len(data)) for i in cells: data[i]['cell_num'] = i for i in cells: data_train = [entry for entry in data if entry['cell_num'] != i] data_test = [entry for entry in data if entry['cell_num'] == i] if args.verbosity > 0: print 'Test cell: {0}'.format(i) # train on all cells but cell i results = train(data=data_train, num_valid=args.num_valid, num_models=args.num_models, var_explained=args.var_explained, window_length=args.window_length, keep_all=args.keep_all, finetune=args.finetune, model_parameters={ 'num_components': args.num_components, 'num_features': args.num_features }, training_parameters={'verbosity': 0}, regularize=args.regularize, verbosity=1) if args.verbosity > 0: print 'Predicting...' # predict responses of cell i predictions = predict(data_test, results, verbosity=0) for entry1, entry2 in zip(data_test, predictions): entry1['predictions'] = entry2['predictions'] # remove data except predictions for entry in data: if 'spikes' in entry: del entry['spikes'] if 'spike_times' in entry: del entry['spike_times'] del entry['calcium'] # save results if args.output.lower().endswith('.mat'): savemat(args.output, {'data': data}) elif args.output.lower().endswith('.xpck'): experiment['args'] = args experiment['data'] = data experiment.save(args.output) else: with open(args.output, 'w') as handle: dump(data, handle, protocol=2) return 0
def main(argv): parser = ArgumentParser(argv[0], description=__doc__) parser.add_argument('dataset', type=str) parser.add_argument('--preprocess', '-p', type=int, default=0) parser.add_argument('--output', '-o', type=str, default='') parser.add_argument('--seconds', '-S', type=int, default=60) parser.add_argument('--offset', '-O', type=int, default=0) parser.add_argument('--width', '-W', type=int, default=10) parser.add_argument('--height', '-H', type=int, default=0) parser.add_argument('--cells', '-c', type=int, default=[], nargs='+') parser.add_argument('--dpi', '-D', type=int, default=100) parser.add_argument('--font', '-F', type=str, default='Arial') args = parser.parse_args(argv[1:]) # load data data = load_data(args.dataset) cells = args.cells if args.cells else range(1, len(data) + 1) data = [data[c - 1] for c in cells] if args.preprocess: data = preprocess(data) plt.rcParams['font.family'] = args.font plt.rcParams['savefig.dpi'] = args.dpi plt.figure(figsize=(args.width, args.height if args.height > 0 else len(data) * 1.5 + .3)) for k, entry in enumerate(data): offset = int(entry['fps'] * args.offset) length = int(entry['fps'] * args.seconds) calcium = entry['calcium'].ravel()[offset:offset + length] plt.subplot(len(data), 1, k + 1) plt.plot(args.offset + arange(calcium.size) / entry['fps'], calcium, color=(.1, .6, .4)) if 'spike_times' in entry: spike_times = entry['spike_times'].ravel() / 1000. spike_times = spike_times[logical_and( spike_times > args.offset, spike_times < args.offset + args.seconds)] for st in spike_times: plt.plot([st, st], [-1, -.5], 'k', lw=1.5) plt.yticks([]) plt.ylim([-2., 5.]) plt.xlim([args.offset, args.offset + args.seconds]) plt.ylabel('Cell {0}'.format(cells[k])) plt.grid() if k < len(data) - 1: plt.xticks(plt.xticks()[0], []) plt.xlabel('Time [seconds]') plt.tight_layout() if args.output: plt.savefig(args.output) else: plt.show() return 0
def main(argv): parser = ArgumentParser(argv[0], description=__doc__, formatter_class=lambda prog: HelpFormatter(prog, max_help_position=10, width=120)) parser.add_argument('dataset', type=str, nargs='+', help='Dataset(s) used for training.') parser.add_argument('output', type=str, help='Directory or file where trained models will be stored.') parser.add_argument('--num_components', '-c', type=int, default=3, help='Number of components used in STM model (default: %(default)d).') parser.add_argument('--num_features', '-f', type=int, default=2, help='Number of quadratic features used in STM model (default: %(default)d).') parser.add_argument('--num_models', '-m', type=int, default=4, help='Number of models trained (predictions will be averaged across models, default: %(default)d).') parser.add_argument('--keep_all', '-k', type=int, default=1, help='If set to 0, only the best model of all trained models is kept (default: %(default)d).') parser.add_argument('--finetune', '-n', type=int, default=0, help='If set to 1, enables another finetuning step which is performed after training (default: %(default)d).') parser.add_argument('--num_train', '-t', type=int, default=0, help='If specified, a (random) subset of cells is used for training.') parser.add_argument('--num_valid', '-s', type=int, default=0, help='If specified, a (random) subset of cells will be used for early stopping based on validation error.') parser.add_argument('--var_explained', '-e', type=float, default=95., help='Controls the degree of dimensionality reduction of fluorescence windows (default: %(default).0f).') parser.add_argument('--window_length', '-w', type=float, default=1000., help='Length of windows extracted from calcium signal for prediction (in milliseconds, default: %(default).0f).') parser.add_argument('--regularize', '-r', type=float, default=0., help='Amount of parameter regularization (filters are regularized for smoothness, default: %(default).1f).') parser.add_argument('--preprocess', '-p', type=int, default=0, help='If the data is not already preprocessed, this can be used to do it.') parser.add_argument('--verbosity', '-v', type=int, default=1) args, _ = parser.parse_known_args(argv[1:]) experiment = Experiment() if not args.dataset: print 'You have to specify at least 1 dataset.' return 0 data = [] for dataset in args.dataset: with open(dataset) as handle: data = data + load(handle) if args.preprocess: data = preprocess(data, args.verbosity) if 'cell_num' not in data[0]: # no cell number is given, assume traces correspond to cells for k, entry in enumerate(data): entry['cell_num'] = k # collect cell ids cell_ids = unique([entry['cell_num'] for entry in data]) # pick cells for training if args.num_train > 0: training_cells = random_select(args.num_train, len(cell_ids)) else: # use all cells for training training_cells = range(len(cell_ids)) models = train([entry for entry in data if entry['cell_num'] in training_cells], num_valid=args.num_valid, num_models=args.num_models, var_explained=args.var_explained, window_length=args.window_length, keep_all=args.keep_all, finetune=args.finetune, model_parameters={ 'num_components': args.num_components, 'num_features': args.num_features}, training_parameters={ 'verbosity': 1}, regularize=args.regularize, verbosity=args.verbosity) experiment['args'] = args experiment['training_cells'] = training_cells experiment['models'] = models if os.path.isdir(args.output): experiment.save(os.path.join(args.output, 'model.xpck')) else: experiment.save(args.output) return 0
def main(argv): parser = ArgumentParser(argv[0], description=__doc__) parser.add_argument('dataset', type=str) parser.add_argument('--preprocess', '-p', type=int, default=0) parser.add_argument('--output', '-o', type=str, default='') parser.add_argument('--seconds', '-S', type=int, default=60) parser.add_argument('--offset', '-O', type=int, default=0) parser.add_argument('--width', '-W', type=int, default=10) parser.add_argument('--height', '-H', type=int, default=0) parser.add_argument('--cells', '-c', type=int, default=[], nargs='+') parser.add_argument('--dpi', '-D', type=int, default=100) parser.add_argument('--font', '-F', type=str, default='Arial') args = parser.parse_args(argv[1:]) # load data data = load_data(args.dataset) cells = args.cells if args.cells else range(1, len(data) + 1) data = [data[c - 1] for c in cells] if args.preprocess: data = preprocess(data) plt.rcParams['font.family'] = args.font plt.rcParams['savefig.dpi'] = args.dpi plt.figure(figsize=( args.width, args.height if args.height > 0 else len(data) * 1.5 + .3)) for k, entry in enumerate(data): offset = int(entry['fps'] * args.offset) length = int(entry['fps'] * args.seconds) calcium = entry['calcium'].ravel()[offset:offset + length] plt.subplot(len(data), 1, k + 1) plt.plot(args.offset + arange(calcium.size) / entry['fps'], calcium, color=(.1, .6, .4)) if 'spike_times' in entry: spike_times = entry['spike_times'].ravel() / 1000. spike_times = spike_times[logical_and( spike_times > args.offset, spike_times < args.offset + args.seconds)] for st in spike_times: plt.plot([st, st], [-1, -.5], 'k', lw=1.5) plt.yticks([]) plt.ylim([-2., 5.]) plt.xlim([args.offset, args.offset + args.seconds]) plt.ylabel('Cell {0}'.format(cells[k])) plt.grid() if k < len(data) - 1: plt.xticks(plt.xticks()[0], []) plt.xlabel('Time [seconds]') plt.tight_layout() if args.output: plt.savefig(args.output) else: plt.show() return 0
df_F.append((corrected_trace - ffilt)/ffilt) raw_traces.append(trace) corr_traces.append(corrected_trace) print "running spike extraction... \n" #gInfo = pickle.load(open(hdf['raw_data'][session][area].attrs['GRABinfo'])) frameRate = gInfo['scanFrameRate'] #print np.array([corr_traces[0]]).shape inf = [] for i in range(n_neurons): sys.stdout.write("\rrunning inference on cell: "+str(1+i)+"/"+str(n_neurons)) sys.stdout.flush() data = [{'calcium':np.array([corr_traces[i]]),'fps': frameRate}] #data = [{'calcium':np.array([i]),'fps': frameRate} for i in corr_traces] inf.append(c2s.predict(c2s.preprocess(data),verbosity=0)) print 'Saving Data' roiInfo['traces'] = np.array(raw_traces) roiInfo['corr_traces'] = np.array(corr_traces) roiInfo['df_F'] = np.array(df_F) roiInfo['spikeRate_inf'] = inf#np.array([i['predictions'] for i in inf]) roiInfo['info'] = ['traces are raw traces', 'corr_traces are neuropil corrected traces', 'idxs are x and y coordinates of ROIs', 'spikeRate_inf are inferred spike rate using Theis et al 2015', 'df_F are neuropil corrected df/F traces', 'centres are the locations of the centre of the ROIs', 'patches are cut out patches of the mean image around the ROI',
def c2s_preprocess_parallel(argsdict): logger = logging.getLogger(funcname()) logger.info('%d start' % os.getpid()) if len(argsdict['data']) > 1: return c2s.preprocess(**argsdict) return c2s.preprocess(**argsdict)[0]