Exemple #1
0
def pwc(model: Model, gen: Generator, instr: Instruction) -> Dict:
    """
    Solve the equation of motion (Lindblad or Schrรถdinger) for a given control
    signal and Hamiltonians.

    Parameters
    ----------
    signal: dict
        Waveform of the control signal per drive line.
    gate: str
        Identifier for one of the gates.

    Returns
    -------
    unitary
        Matrix representation of the gate.
    """
    signal = gen.generate_signals(instr)
    # Why do I get 0.0 if I print gen.resolution here?! FR
    ts = []
    if model.controllability:
        h0, hctrls = model.get_Hamiltonians()
        signals = []
        hks = []
        for key in signal:
            signals.append(signal[key]["values"])
            ts = signal[key]["ts"]
            hks.append(hctrls[key])
        signals = tf.cast(signals, tf.complex128)
        hks = tf.cast(hks, tf.complex128)
    else:
        h0 = model.get_Hamiltonian(signal)
        ts_list = [sig["ts"][1:] for sig in signal.values()]
        ts = tf.constant(tf.math.reduce_mean(ts_list, axis=0))
        hks = None
        signals = None
        if not np.all(
            tf.math.reduce_variance(ts_list, axis=0) < 1e-5 * (ts[1] - ts[0])
        ):
            raise Exception("C3Error:Something with the times happend.")
        if not np.all(
            tf.math.reduce_variance(ts[1:] - ts[:-1]) < 1e-5 * (ts[1] - ts[0])
        ):
            raise Exception("C3Error:Something with the times happend.")

    dt = tf.constant(ts[1].numpy() - ts[0].numpy(), dtype=tf.complex128)

    batch_size = tf.constant(len(h0), tf.int32)

    dUs = tf_batch_propagate(h0, hks, signals, dt, batch_size=batch_size)

    U = tf_matmul_left(tf.cast(dUs, tf.complex128))

    if model.max_excitations:
        U = model.blowup_excitations(tf_matmul_left(tf.cast(dUs, tf.complex128)))
        dUs = tf.vectorized_map(model.blowup_excitations, dUs)

    return {"U": U, "dUs": dUs, "ts": ts}
Exemple #2
0
def _get_hs_of_t_ts(
    model: Model, gen: Generator, instr: Instruction, prop_res=1
) -> Dict:
    """
    Return a Dict containing:

    - a list of

      H(t) = H_0 + sum_k c_k H_k.

    - time slices ts

    - timestep dt

    Parameters
    ----------
    prop_res : tf.float
        resolution required by the propagation method
    h0 : tf.tensor
        Drift Hamiltonian.
    hks : list of tf.tensor
        List of control Hamiltonians.
    cflds_t : array of tf.float
        Vector of control field values at time t.
    ts : float
        Length of one time slice.
    """
    Hs = []
    ts = []
    gen.resolution = prop_res * gen.resolution
    signal = gen.generate_signals(instr)
    Hs = model.get_Hamiltonian(signal)
    ts_list = [sig["ts"][1:] for sig in signal.values()]
    ts = tf.constant(tf.math.reduce_mean(ts_list, axis=0))
    if not np.all(tf.math.reduce_variance(ts_list, axis=0) < 1e-5 * (ts[1] - ts[0])):
        raise Exception("C3Error:Something with the times happend.")
    if not np.all(tf.math.reduce_variance(ts[1:] - ts[:-1]) < 1e-5 * (ts[1] - ts[0])):
        raise Exception("C3Error:Something with the times happend.")

    dt = tf.constant(ts[1 * prop_res].numpy() - ts[0].numpy(), dtype=tf.complex128)
    return {"Hs": Hs, "ts": ts[::prop_res], "dt": dt}