Exemple #1
0
    def loadCheckpoint(self):
        opts = self.opts
        previous_checkpoint = opts['temp_var']['checkpoint_model']
        pretrained_model = opts['temp_var']['pretrained_model']
        num_xpus = opts['distributed']['num_xpus']
        if (previous_checkpoint is not None):
            if os.path.exists(previous_checkpoint):
                log.info(
                    'Load previous checkpoint:{}'.format(previous_checkpoint))
                start_epoch, prev_checkpointed_lr, _best_metric = \
                    checkpoint.initialize_params_from_file(
                        model=self.train_model,
                        weights_file=previous_checkpoint,
                        num_xpus=num_xpus,
                        opts=opts,
                        broadcast_computed_param=True,
                        reset_epoch=False,
                    )
        elif pretrained_model is not None and os.path.exists(pretrained_model):
            log.info("Load pretrained model: {}".format(pretrained_model))
            start_epoch, prev_checkpointed_lr, best_metric = \
                checkpoint.initialize_params_from_file(
                    model=self.train_model,
                    weights_file=pretrained_model,
                    num_xpus=num_xpus,
                    opts=opts,
                    broadcast_computed_param=True,
                    reset_epoch=opts['model_param']['reset_epoch'],
                )

        data_parallel_model.FinalizeAfterCheckpoint(self.train_model)
Exemple #2
0
def Train(args):
    # Either use specified device list or generate one
    if args.gpus is not None:
        gpus = [int(x) for x in args.gpus.split(',')]
        num_gpus = len(gpus)
    else:
        gpus = list(range(args.num_gpus))
        num_gpus = args.num_gpus

    log.info("Running on GPUs: {}".format(gpus))

    # Verify valid batch size
    total_batch_size = args.batch_size
    batch_per_device = total_batch_size // num_gpus
    assert \
        total_batch_size % num_gpus == 0, \
        "Number of GPUs must divide batch size"

    # Round down epoch size to closest multiple of batch size across machines
    global_batch_size = total_batch_size * args.num_shards
    epoch_iters = int(args.epoch_size / global_batch_size)

    assert \
        epoch_iters > 0, \
        "Epoch size must be larger than batch size times shard count"

    args.epoch_size = epoch_iters * global_batch_size
    log.info("Using epoch size: {}".format(args.epoch_size))

    # Create ModelHelper object
    train_arg_scope = {
        'order': 'NCHW',
        'use_cudnn': True,
        'cudnn_exhaustive_search': True,
        'ws_nbytes_limit': (args.cudnn_workspace_limit_mb * 1024 * 1024),
    }
    train_model = model_helper.ModelHelper(
        name="ban-pc-resnet50", arg_scope=train_arg_scope
    )

    num_shards = args.num_shards
    shard_id = args.shard_id

    # Expect interfaces to be comma separated.
    # Use of multiple network interfaces is not yet complete,
    # so simply use the first one in the list.
    interfaces = args.distributed_interfaces.split(",")

    # Rendezvous using MPI when run with mpirun
    if os.getenv("OMPI_COMM_WORLD_SIZE") is not None:
        num_shards = int(os.getenv("OMPI_COMM_WORLD_SIZE", 1))
        shard_id = int(os.getenv("OMPI_COMM_WORLD_RANK", 0))
        if num_shards > 1:
            rendezvous = dict(
                kv_handler=None,
                num_shards=num_shards,
                shard_id=shard_id,
                engine="GLOO",
                transport=args.distributed_transport,
                interface=interfaces[0],
                mpi_rendezvous=True,
                exit_nets=None)

    elif num_shards > 1:
        # Create rendezvous for distributed computation
        store_handler = "store_handler"
        if args.redis_host is not None:
            # Use Redis for rendezvous if Redis host is specified
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "RedisStoreHandlerCreate", [], [store_handler],
                    host=args.redis_host,
                    port=args.redis_port,
                    prefix=args.run_id,
                )
            )
        else:
            # Use filesystem for rendezvous otherwise
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "FileStoreHandlerCreate", [], [store_handler],
                    path=args.file_store_path,
                    prefix=args.run_id,
                )
            )

        rendezvous = dict(
            kv_handler=store_handler,
            shard_id=shard_id,
            num_shards=num_shards,
            engine="GLOO",
            transport=args.distributed_transport,
            interface=interfaces[0],
            exit_nets=None)

    else:
        rendezvous = None

    # Model configs for constructing model
    with open(args.model_config) as f:
        model_config = yaml.load(f)

    # Model building functions
    def create_target_model_ops(model, loss_scale):
        initializer = (PseudoFP16Initializer if args.dtype == 'float16'
                       else Initializer)
        with brew.arg_scope([brew.conv, brew.fc],
                            WeightInitializer=initializer,
                            BiasInitializer=initializer,
                            enable_tensor_core=args.enable_tensor_core,
                            float16_compute=args.float16_compute):
            pred = add_se_model(model, model_config, "data", is_test=False)

        if args.dtype == 'float16':
            pred = model.net.HalfToFloat(pred, pred + '_fp32')

        loss = add_softmax_loss(model, pred, 'label')
        brew.accuracy(model, ['softmax', 'label'], 'accuracy')
        return [loss]

    def add_optimizer(model):
        '''
        stepsz = int(30 * args.epoch_size / total_batch_size / num_shards)
        optimizer.add_weight_decay(model, args.weight_decay)
        opt = optimizer.build_multi_precision_sgd(
            model,
            args.base_learning_rate,
            momentum=0.9,
            nesterov=1,
            policy="step",
            stepsize=stepsz,
            gamma=0.1
        )
        '''

        optimizer.add_weight_decay(model, args.weight_decay)
        opt = optimizer.build_multi_precision_sgd(
            model,
            base_learning_rate = args.base_learning_rate,
            momentum = model_config['solver']['momentum'],
            nesterov = model_config['solver']['nesterov'],
            policy = model_config['solver']['lr_policy'],
            power = model_config['solver']['power'],
            max_iter = model_config['solver']['max_iter'],
        )
        return opt

    # Define add_image_input function.
    # Depends on the "train_data" argument.
    # Note that the reader will be shared with between all GPUS.
    reader = train_model.CreateDB(
        "reader",
        db=args.train_data,
        db_type=args.db_type,
        num_shards=num_shards,
        shard_id=shard_id,
    )

    def add_image_input(model):
        AddImageInput(
            model,
            reader,
            batch_size=batch_per_device,
            img_size=args.image_size,
            dtype=args.dtype,
            is_test=False,
        )

    def add_post_sync_ops(model):
        """Add ops applied after initial parameter sync."""
        for param_info in model.GetOptimizationParamInfo(model.GetParams()):
            if param_info.blob_copy is not None:
                model.param_init_net.HalfToFloat(
                    param_info.blob,
                    param_info.blob_copy[core.DataType.FLOAT]
                )

    # Create parallelized model
    data_parallel_model.Parallelize(
        train_model,
        input_builder_fun=add_image_input,
        forward_pass_builder_fun=create_target_model_ops,
        optimizer_builder_fun=add_optimizer,
        post_sync_builder_fun=add_post_sync_ops,
        devices=gpus,
        rendezvous=rendezvous,
        optimize_gradient_memory=False,
        cpu_device=args.use_cpu,
        shared_model=args.use_cpu,
        combine_spatial_bn=args.use_cpu,
    )

    if args.model_parallel:
        # Shift half of the activations to another GPU
        assert workspace.NumCudaDevices() >= 2 * args.num_gpus
        activations = data_parallel_model_utils.GetActivationBlobs(train_model)
        data_parallel_model_utils.ShiftActivationDevices(
            train_model,
            activations=activations[len(activations) // 2:],
            shifts={g: args.num_gpus + g for g in range(args.num_gpus)},
        )

    data_parallel_model.OptimizeGradientMemory(train_model, {}, set(), False)

    workspace.RunNetOnce(train_model.param_init_net)
    workspace.CreateNet(train_model.net)

    # Add test model, if specified
    test_model = None
    if (args.test_data is not None):
        log.info("----- Create test net ----")
        test_arg_scope = {
            'order': "NCHW",
            'use_cudnn': True,
            'cudnn_exhaustive_search': True,
        }
        test_model = model_helper.ModelHelper(
            name="ban-pc-resnet50_test", arg_scope=test_arg_scope, init_params=False
        )

        test_reader = test_model.CreateDB(
            "test_reader",
            db=args.test_data,
            db_type=args.db_type,
        )

        def test_input_fn(model):
            AddImageInput(
                model,
                test_reader,
                batch_size=batch_per_device,
                img_size=args.image_size,
                dtype=args.dtype,
                is_test=True,
            )

        data_parallel_model.Parallelize(
            test_model,
            input_builder_fun=test_input_fn,
            forward_pass_builder_fun=create_target_model_ops,
            post_sync_builder_fun=add_post_sync_ops,
            param_update_builder_fun=None,
            devices=gpus,
            cpu_device=args.use_cpu,
        )
        workspace.RunNetOnce(test_model.param_init_net)
        workspace.CreateNet(test_model.net)

    epoch = 0
    # load the pre-trained model and reset epoch
    if args.load_model_path is not None:
        LoadModel(args.load_model_path, train_model)

        # Sync the model params
        data_parallel_model.FinalizeAfterCheckpoint(train_model)

        # reset epoch. load_model_path should end with *_X.mdl,
        # where X is the epoch number
        last_str = args.load_model_path.split('_')[-1]
        if last_str.endswith('.mdl'):
            epoch = int(last_str[:-4])
            log.info("Reset epoch to {}".format(epoch))
        else:
            log.warning("The format of load_model_path doesn't match!")

    expname = "log/{}/resnet50_gpu{}_b{}_L{}_lr{:.2f}_v2".format(
        args.dataset_name,
        args.num_gpus,
        total_batch_size,
        args.num_labels,
        args.base_learning_rate,
    )
    explog = experiment_util.ModelTrainerLog(expname, args)

    # Load pretrained param_init_net
    load_init_net_multigpu(args)

    # Run the training one epoch a time
    best_accuracy = 0
    while epoch < args.num_epochs:
        epoch, best_accuracy = RunEpoch(
            args,
            epoch,
            train_model,
            test_model,
            total_batch_size,
            num_shards,
            expname,
            explog,
            best_accuracy,
        )

        # Save the model for each epoch
        SaveModel(args, train_model, epoch)

        model_path = "%s/%s_" % (
            args.file_store_path,
            args.save_model_name
        )
        # remove the saved model from the previous epoch if it exists
        if os.path.isfile(model_path + str(epoch - 1) + ".mdl"):
            os.remove(model_path + str(epoch - 1) + ".mdl")
def Train(args):
    if args.model == "resnext":
        model_name = "resnext" + str(args.num_layers)
    elif args.model == "shufflenet":
        model_name = "shufflenet"

    # Either use specified device list or generate one
    if args.gpus is not None:
        gpus = [int(x) for x in args.gpus.split(',')]
        num_gpus = len(gpus)
    else:
        gpus = list(range(args.num_gpus))
        num_gpus = args.num_gpus

    log.info("Running on GPUs: {}".format(gpus))

    # Verify valid batch size
    total_batch_size = args.batch_size
    batch_per_device = total_batch_size // num_gpus
    assert \
        total_batch_size % num_gpus == 0, \
        "Number of GPUs must divide batch size"

    # Verify valid image mean/std per channel
    if args.image_mean_per_channel:
        assert \
            len(args.image_mean_per_channel) == args.num_channels, \
            "The number of channels of image mean doesn't match input"

    if args.image_std_per_channel:
        assert \
            len(args.image_std_per_channel) == args.num_channels, \
            "The number of channels of image std doesn't match input"

    # Round down epoch size to closest multiple of batch size across machines
    global_batch_size = total_batch_size * args.num_shards
    epoch_iters = int(args.epoch_size / global_batch_size)

    assert \
        epoch_iters > 0, \
        "Epoch size must be larger than batch size times shard count"

    args.epoch_size = epoch_iters * global_batch_size
    log.info("Using epoch size: {}".format(args.epoch_size))

    # Create ModelHelper object
    if args.use_ideep:
        train_arg_scope = {
            'use_cudnn': False,
            'cudnn_exhaustive_search': False,
            'training_mode': 1
        }
    else:
        train_arg_scope = {
            'order': 'NCHW',
            'use_cudnn': True,
            'cudnn_exhaustive_search': True,
            'ws_nbytes_limit': (args.cudnn_workspace_limit_mb * 1024 * 1024),
        }
    train_model = model_helper.ModelHelper(
        name=model_name, arg_scope=train_arg_scope
    )

    num_shards = args.num_shards
    shard_id = args.shard_id

    # Expect interfaces to be comma separated.
    # Use of multiple network interfaces is not yet complete,
    # so simply use the first one in the list.
    interfaces = args.distributed_interfaces.split(",")

    # Rendezvous using MPI when run with mpirun
    if os.getenv("OMPI_COMM_WORLD_SIZE") is not None:
        num_shards = int(os.getenv("OMPI_COMM_WORLD_SIZE", 1))
        shard_id = int(os.getenv("OMPI_COMM_WORLD_RANK", 0))
        if num_shards > 1:
            rendezvous = dict(
                kv_handler=None,
                num_shards=num_shards,
                shard_id=shard_id,
                engine="GLOO",
                transport=args.distributed_transport,
                interface=interfaces[0],
                mpi_rendezvous=True,
                exit_nets=None)

    elif num_shards > 1:
        # Create rendezvous for distributed computation
        store_handler = "store_handler"
        if args.redis_host is not None:
            # Use Redis for rendezvous if Redis host is specified
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "RedisStoreHandlerCreate", [], [store_handler],
                    host=args.redis_host,
                    port=args.redis_port,
                    prefix=args.run_id,
                )
            )
        else:
            # Use filesystem for rendezvous otherwise
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "FileStoreHandlerCreate", [], [store_handler],
                    path=args.file_store_path,
                    prefix=args.run_id,
                )
            )

        rendezvous = dict(
            kv_handler=store_handler,
            shard_id=shard_id,
            num_shards=num_shards,
            engine="GLOO",
            transport=args.distributed_transport,
            interface=interfaces[0],
            exit_nets=None)

    else:
        rendezvous = None

    # Model building functions
    def create_resnext_model_ops(model, loss_scale):
        initializer = (PseudoFP16Initializer if args.dtype == 'float16'
                       else Initializer)

        with brew.arg_scope([brew.conv, brew.fc],
                            WeightInitializer=initializer,
                            BiasInitializer=initializer,
                            enable_tensor_core=args.enable_tensor_core,
                            float16_compute=args.float16_compute):
            pred = resnet.create_resnext(
                model,
                "data",
                num_input_channels=args.num_channels,
                num_labels=args.num_labels,
                num_layers=args.num_layers,
                num_groups=args.resnext_num_groups,
                num_width_per_group=args.resnext_width_per_group,
                no_bias=True,
                no_loss=True,
            )

        if args.dtype == 'float16':
            pred = model.net.HalfToFloat(pred, pred + '_fp32')

        softmax, loss = model.SoftmaxWithLoss([pred, 'label'],
                                              ['softmax', 'loss'])
        loss = model.Scale(loss, scale=loss_scale)
        brew.accuracy(model, [softmax, "label"], "accuracy", top_k=1)
        brew.accuracy(model, [softmax, "label"], "accuracy_top5", top_k=5)
        return [loss]

    def create_shufflenet_model_ops(model, loss_scale):
        initializer = (PseudoFP16Initializer if args.dtype == 'float16'
                       else Initializer)

        with brew.arg_scope([brew.conv, brew.fc],
                            WeightInitializer=initializer,
                            BiasInitializer=initializer,
                            enable_tensor_core=args.enable_tensor_core,
                            float16_compute=args.float16_compute):
            pred = shufflenet.create_shufflenet(
                model,
                "data",
                num_input_channels=args.num_channels,
                num_labels=args.num_labels,
                no_loss=True,
            )

        if args.dtype == 'float16':
            pred = model.net.HalfToFloat(pred, pred + '_fp32')

        softmax, loss = model.SoftmaxWithLoss([pred, 'label'],
                                              ['softmax', 'loss'])
        loss = model.Scale(loss, scale=loss_scale)
        brew.accuracy(model, [softmax, "label"], "accuracy", top_k=1)
        brew.accuracy(model, [softmax, "label"], "accuracy_top5", top_k=5)
        return [loss]

    def add_optimizer(model):
        stepsz = int(30 * args.epoch_size / total_batch_size / num_shards)

        if args.float16_compute:
            # TODO: merge with multi-precision optimizer
            opt = optimizer.build_fp16_sgd(
                model,
                args.base_learning_rate,
                momentum=0.9,
                nesterov=1,
                weight_decay=args.weight_decay,   # weight decay included
                policy="step",
                stepsize=stepsz,
                gamma=0.1
            )
        else:
            optimizer.add_weight_decay(model, args.weight_decay)
            opt = optimizer.build_multi_precision_sgd(
                model,
                args.base_learning_rate,
                momentum=0.9,
                nesterov=1,
                policy="step",
                stepsize=stepsz,
                gamma=0.1
            )
        return opt

    # Define add_image_input function.
    # Depends on the "train_data" argument.
    # Note that the reader will be shared with between all GPUS.
    if args.train_data == "null":
        def add_image_input(model):
            AddNullInput(
                model,
                None,
                batch_size=batch_per_device,
                img_size=args.image_size,
                dtype=args.dtype,
            )
    else:
        reader = train_model.CreateDB(
            "reader",
            db=args.train_data,
            db_type=args.db_type,
            num_shards=num_shards,
            shard_id=shard_id,
        )

        def add_image_input(model):
            AddImageInput(
                model,
                reader,
                batch_size=batch_per_device,
                img_size=args.image_size,
                dtype=args.dtype,
                is_test=False,
                mean_per_channel=args.image_mean_per_channel,
                std_per_channel=args.image_std_per_channel,
            )

    def add_post_sync_ops(model):
        """Add ops applied after initial parameter sync."""
        for param_info in model.GetOptimizationParamInfo(model.GetParams()):
            if param_info.blob_copy is not None:
                model.param_init_net.HalfToFloat(
                    param_info.blob,
                    param_info.blob_copy[core.DataType.FLOAT]
                )

    data_parallel_model.Parallelize(
        train_model,
        input_builder_fun=add_image_input,
        forward_pass_builder_fun=create_resnext_model_ops
        if args.model == "resnext" else create_shufflenet_model_ops,
        optimizer_builder_fun=add_optimizer,
        post_sync_builder_fun=add_post_sync_ops,
        devices=gpus,
        rendezvous=rendezvous,
        optimize_gradient_memory=False,
        use_nccl=args.use_nccl,
        cpu_device=args.use_cpu,
        ideep=args.use_ideep,
        shared_model=args.use_cpu,
        combine_spatial_bn=args.use_cpu,
    )

    data_parallel_model.OptimizeGradientMemory(train_model, {}, set(), False)

    workspace.RunNetOnce(train_model.param_init_net)
    workspace.CreateNet(train_model.net)

    # Add test model, if specified
    test_model = None
    if (args.test_data is not None):
        log.info("----- Create test net ----")
        if args.use_ideep:
            test_arg_scope = {
                'use_cudnn': False,
                'cudnn_exhaustive_search': False,
            }
        else:
            test_arg_scope = {
                'order': "NCHW",
                'use_cudnn': True,
                'cudnn_exhaustive_search': True,
            }
        test_model = model_helper.ModelHelper(
            name=model_name + "_test",
            arg_scope=test_arg_scope,
            init_params=False,
        )

        test_reader = test_model.CreateDB(
            "test_reader",
            db=args.test_data,
            db_type=args.db_type,
        )

        def test_input_fn(model):
            AddImageInput(
                model,
                test_reader,
                batch_size=batch_per_device,
                img_size=args.image_size,
                dtype=args.dtype,
                is_test=True,
                mean_per_channel=args.image_mean_per_channel,
                std_per_channel=args.image_std_per_channel,
            )

        data_parallel_model.Parallelize(
            test_model,
            input_builder_fun=test_input_fn,
            forward_pass_builder_fun=create_resnext_model_ops
            if args.model == "resnext" else create_shufflenet_model_ops,
            post_sync_builder_fun=add_post_sync_ops,
            param_update_builder_fun=None,
            devices=gpus,
            use_nccl=args.use_nccl,
            cpu_device=args.use_cpu,
        )
        workspace.RunNetOnce(test_model.param_init_net)
        workspace.CreateNet(test_model.net)

    epoch = 0
    # load the pre-trained model and reset epoch
    if args.load_model_path is not None:
        LoadModel(args.load_model_path, train_model, args.use_ideep)

        # Sync the model params
        data_parallel_model.FinalizeAfterCheckpoint(train_model)

        # reset epoch. load_model_path should end with *_X.mdl,
        # where X is the epoch number
        last_str = args.load_model_path.split('_')[-1]
        if last_str.endswith('.mdl'):
            epoch = int(last_str[:-4])
            log.info("Reset epoch to {}".format(epoch))
        else:
            log.warning("The format of load_model_path doesn't match!")

    expname = "%s_gpu%d_b%d_L%d_lr%.2f_v2" % (
        model_name,
        args.num_gpus,
        total_batch_size,
        args.num_labels,
        args.base_learning_rate,
    )

    explog = experiment_util.ModelTrainerLog(expname, args)

    # Run the training one epoch a time
    while epoch < args.num_epochs:
        epoch = RunEpoch(
            args,
            epoch,
            train_model,
            test_model,
            total_batch_size,
            num_shards,
            expname,
            explog
        )

        # Save the model for each epoch
        SaveModel(args, train_model, epoch, args.use_ideep)

        model_path = "%s/%s_" % (
            args.file_store_path,
            args.save_model_name
        )
        # remove the saved model from the previous epoch if it exists
        if os.path.isfile(model_path + str(epoch - 1) + ".mdl"):
            os.remove(model_path + str(epoch - 1) + ".mdl")
Exemple #4
0
def Train(args):
    if args.gpus is not None:
        gpus = [int(x) for x in args.gpus.split(',')]
        num_gpus = len(gpus)
    else:
        gpus = range(args.num_gpus)
        num_gpus = args.num_gpus

    log.info("Running on GPUs: {}".format(gpus))

    # Modify to make it consistent with the distributed trainer
    total_batch_size = args.batch_size * num_gpus
    batch_per_device = args.batch_size

    # Round down epoch size to closest multiple of batch size across machines
    epoch_iters = int(args.epoch_size / total_batch_size)
    args.epoch_size = epoch_iters * total_batch_size
    log.info("Using epoch size: {}".format(args.epoch_size))

    # Create CNNModeLhelper object
    train_model = cnn.CNNModelHelper(
        order="NCHW",
        name='{}_train'.format(args.model_name),
        use_cudnn=(True if args.use_cudnn == 1 else False),
        cudnn_exhaustive_search=True,
        ws_nbytes_limit=(args.cudnn_workspace_limit_mb * 1024 * 1024),
    )

    # Model building functions
    def create_model_ops(model, loss_scale):
        return model_builder.build_model(
            model=model,
            model_name=args.model_name,
            model_depth=args.model_depth,
            num_labels=args.num_labels,
            batch_size=args.batch_size,
            num_channels=args.num_channels,
            crop_size=args.crop_size,
            clip_length=(args.clip_length_of
                         if args.input_type else args.clip_length_rgb),
            loss_scale=loss_scale,
            pred_layer_name=args.pred_layer_name,
            multi_label=args.multi_label,
            channel_multiplier=args.channel_multiplier,
            bottleneck_multiplier=args.bottleneck_multiplier,
            use_dropout=args.use_dropout,
            conv1_temporal_stride=args.conv1_temporal_stride,
            conv1_temporal_kernel=args.conv1_temporal_kernel,
            use_pool1=args.use_pool1,
            audio_input_3d=args.audio_input_3d,
            g_blend=args.g_blend,
            audio_weight=args.audio_weight,
            visual_weight=args.visual_weight,
            av_weight=args.av_weight,
        )

    # SGD
    def add_parameter_update_ops(model):
        model.AddWeightDecay(args.weight_decay)
        ITER = model.Iter("ITER")
        stepsz = args.step_epoch * args.epoch_size / args.batch_size / num_gpus
        LR = model.net.LearningRate(
            [ITER],
            "LR",
            base_lr=args.base_learning_rate * num_gpus,
            policy="step",
            stepsize=int(stepsz),
            gamma=args.gamma,
        )
        AddMomentumParameterUpdate(model, LR)

    # Input. Note that the reader must be shared with all GPUS.
    train_reader, train_examples = reader_utils.create_data_reader(
        train_model,
        name="train_reader",
        input_data=args.train_data,
    )
    log.info("Training set has {} examples".format(train_examples))

    def add_video_input(model):
        model_helper.AddVideoInput(
            model,
            train_reader,
            batch_size=batch_per_device,
            length_rgb=args.clip_length_rgb,
            clip_per_video=1,
            random_mirror=True,
            decode_type=0,
            sampling_rate_rgb=args.sampling_rate_rgb,
            scale_h=args.scale_h,
            scale_w=args.scale_w,
            crop_size=args.crop_size,
            video_res_type=args.video_res_type,
            short_edge=min(args.scale_h, args.scale_w),
            num_decode_threads=args.num_decode_threads,
            do_multi_label=args.multi_label,
            num_of_class=args.num_labels,
            random_crop=True,
            input_type=args.input_type,
            length_of=args.clip_length_of,
            sampling_rate_of=args.sampling_rate_of,
            frame_gap_of=args.frame_gap_of,
            do_flow_aggregation=args.do_flow_aggregation,
            flow_data_type=args.flow_data_type,
            get_rgb=(args.input_type == 0 or args.input_type >= 3),
            get_optical_flow=(args.input_type == 1 or args.input_type >= 4),
            get_logmels=(args.input_type >= 2),
            get_video_id=args.get_video_id,
            jitter_scales=[int(n) for n in args.jitter_scales.split(',')],
            use_local_file=args.use_local_file,
        )

    # Create parallelized model
    data_parallel_model.Parallelize_GPU(
        train_model,
        input_builder_fun=add_video_input,
        forward_pass_builder_fun=create_model_ops,
        param_update_builder_fun=add_parameter_update_ops,
        devices=gpus,
        rendezvous=None,
        net_type=('prof_dag' if args.profiling == 1 else 'dag'),
        optimize_gradient_memory=True,
    )

    # Add test model, if specified
    test_model = None
    if args.test_data is not None:
        log.info("----- Create test net ----")
        test_model = cnn.CNNModelHelper(
            order="NCHW",
            name='{}_test'.format(args.model_name),
            use_cudnn=(True if args.use_cudnn == 1 else False),
            cudnn_exhaustive_search=True)

        test_reader, test_examples = reader_utils.create_data_reader(
            test_model,
            name="test_reader",
            input_data=args.test_data,
        )

        log.info("Testing set has {} examples".format(test_examples))

        def test_input_fn(model):
            model_helper.AddVideoInput(
                model,
                test_reader,
                batch_size=batch_per_device,
                length_rgb=args.clip_length_rgb,
                clip_per_video=1,
                decode_type=0,
                random_mirror=False,
                random_crop=False,
                sampling_rate_rgb=args.sampling_rate_rgb,
                scale_h=args.scale_h,
                scale_w=args.scale_w,
                crop_size=args.crop_size,
                video_res_type=args.video_res_type,
                short_edge=min(args.scale_h, args.scale_w),
                num_decode_threads=args.num_decode_threads,
                do_multi_label=args.multi_label,
                num_of_class=args.num_labels,
                input_type=args.input_type,
                length_of=args.clip_length_of,
                sampling_rate_of=args.sampling_rate_of,
                frame_gap_of=args.frame_gap_of,
                do_flow_aggregation=args.do_flow_aggregation,
                flow_data_type=args.flow_data_type,
                get_rgb=(args.input_type == 0),
                get_optical_flow=(args.input_type == 1),
                get_video_id=args.get_video_id,
                use_local_file=args.use_local_file,
            )

        data_parallel_model.Parallelize_GPU(
            test_model,
            input_builder_fun=test_input_fn,
            forward_pass_builder_fun=create_model_ops,
            param_update_builder_fun=None,
            devices=gpus,
            optimize_gradient_memory=True,
        )
        workspace.RunNetOnce(test_model.param_init_net)
        workspace.CreateNet(test_model.net)

    workspace.RunNetOnce(train_model.param_init_net)
    workspace.CreateNet(train_model.net)

    epoch = 0
    # load the pre-trained model and reset epoch
    if args.load_model_path is not None:
        if args.db_type == 'pickle':
            model_loader.LoadModelFromPickleFile(train_model,
                                                 args.load_model_path,
                                                 use_gpu=True,
                                                 root_gpu_id=gpus[0])
        else:
            model_helper.LoadModel(args.load_model_path, args.db_type)
        # Sync the model params
        data_parallel_model.FinalizeAfterCheckpoint(
            train_model,
            GetCheckpointParams(train_model),
        )

        if args.is_checkpoint:
            # reset epoch. load_model_path should end with *_X.mdl,
            # where X is the epoch number
            last_str = args.load_model_path.split('_')[-1]
            if last_str.endswith('.mdl'):
                epoch = int(last_str[:-4])
                log.info("Reset epoch to {}".format(epoch))
            else:
                log.warning("The format of load_model_path doesn't match!")

    expname = "%s_gpu%d_b%d_L%d_lr%.2f" % (
        args.model_name,
        args.num_gpus,
        total_batch_size,
        args.num_labels,
        args.base_learning_rate,
    )
    explog = experiment_util.ModelTrainerLog(expname, args)

    # Run the training one epoch a time
    while epoch < args.num_epochs:
        epoch = RunEpoch(args, epoch, train_model, test_model,
                         total_batch_size, 1, expname, explog)

        # Save the model for each epoch
        SaveModel(args, train_model, epoch)
Exemple #5
0
def Train(args):
    # Either use specified device list or generate one
    if args.gpus is not None:
        gpus = [int(x) for x in args.gpus.split(',')]
        num_gpus = len(gpus)
    else:
        gpus = range(args.num_gpus)
        num_gpus = args.num_gpus

    log.info("Running on GPUs: {}".format(gpus))

    # Verify valid batch size
    total_batch_size = args.batch_size
    batch_per_device = total_batch_size // num_gpus
    assert \
        total_batch_size % num_gpus == 0, \
        "Number of GPUs must divide batch size"

    # Round down epoch size to closest multiple of batch size across machines
    global_batch_size = total_batch_size * args.num_shards
    epoch_iters = int(args.epoch_size / global_batch_size)
    args.epoch_size = epoch_iters * global_batch_size
    log.info("Using epoch size: {}".format(args.epoch_size))

    # Create CNNModeLhelper object
    train_model = cnn.CNNModelHelper(
        order="NCHW",
        name="resnet50",
        use_cudnn=True,
        cudnn_exhaustive_search=True,
        ws_nbytes_limit=(args.cudnn_workspace_limit_mb * 1024 * 1024),
    )

    num_shards = args.num_shards
    shard_id = args.shard_id
    if num_shards > 1:
        # Create rendezvous for distributed computation
        store_handler = "store_handler"
        if args.redis_host is not None:
            # Use Redis for rendezvous if Redis host is specified
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "RedisStoreHandlerCreate",
                    [],
                    [store_handler],
                    host=args.redis_host,
                    port=args.redis_port,
                    prefix=args.run_id,
                ))
        else:
            # Use filesystem for rendezvous otherwise
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "FileStoreHandlerCreate",
                    [],
                    [store_handler],
                    path=args.file_store_path,
                ))
        rendezvous = dict(kv_handler=store_handler,
                          shard_id=shard_id,
                          num_shards=num_shards,
                          engine="GLOO",
                          exit_nets=None)
    else:
        rendezvous = None

    # Model building functions
    def create_resnet50_model_ops(model, loss_scale):
        [softmax, loss] = resnet.create_resnet50(
            model,
            "data",
            num_input_channels=args.num_channels,
            num_labels=args.num_labels,
            label="label",
            no_bias=True,
        )
        loss = model.Scale(loss, scale=loss_scale)
        model.Accuracy([softmax, "label"], "accuracy")
        return [loss]

    # SGD
    def add_parameter_update_ops(model):
        model.AddWeightDecay(args.weight_decay)
        ITER = model.Iter("ITER")
        stepsz = int(30 * args.epoch_size / total_batch_size / num_shards)
        LR = model.net.LearningRate(
            [ITER],
            "LR",
            base_lr=args.base_learning_rate,
            policy="step",
            stepsize=stepsz,
            gamma=0.1,
        )
        AddMomentumParameterUpdate(model, LR)

    # Input. Note that the reader must be shared with all GPUS.
    reader = train_model.CreateDB(
        "reader",
        db=args.train_data,
        db_type=args.db_type,
        num_shards=num_shards,
        shard_id=shard_id,
    )

    def add_image_input(model):
        AddImageInput(
            model,
            reader,
            batch_size=batch_per_device,
            img_size=args.image_size,
        )

    # Create parallelized model
    data_parallel_model.Parallelize_GPU(
        train_model,
        input_builder_fun=add_image_input,
        forward_pass_builder_fun=create_resnet50_model_ops,
        param_update_builder_fun=add_parameter_update_ops,
        devices=gpus,
        rendezvous=rendezvous,
        optimize_gradient_memory=True,
    )

    # Add test model, if specified
    test_model = None
    if (args.test_data is not None):
        log.info("----- Create test net ----")
        test_model = cnn.CNNModelHelper(order="NCHW",
                                        name="resnet50_test",
                                        use_cudnn=True,
                                        cudnn_exhaustive_search=True)

        test_reader = test_model.CreateDB(
            "test_reader",
            db=args.test_data,
            db_type=args.db_type,
        )

        def test_input_fn(model):
            AddImageInput(
                model,
                test_reader,
                batch_size=batch_per_device,
                img_size=args.image_size,
            )

        data_parallel_model.Parallelize_GPU(
            test_model,
            input_builder_fun=test_input_fn,
            forward_pass_builder_fun=create_resnet50_model_ops,
            param_update_builder_fun=None,
            devices=gpus,
        )
        workspace.RunNetOnce(test_model.param_init_net)
        workspace.CreateNet(test_model.net)

    workspace.RunNetOnce(train_model.param_init_net)
    workspace.CreateNet(train_model.net)

    epoch = 0
    # load the pre-trained model and reset epoch
    if args.load_model_path is not None:
        LoadModel(args.load_model_path, train_model)
        # Sync the model params
        data_parallel_model.FinalizeAfterCheckpoint(
            train_model,
            GetCheckpointParams(train_model),
        )

        # reset epoch. load_model_path should end with *_X.mdl,
        # where X is the epoch number
        last_str = args.load_model_path.split('_')[-1]
        if last_str.endswith('.mdl'):
            epoch = int(last_str[:-4])
            log.info("Reset epoch to {}".format(epoch))
        else:
            log.warning("The format of load_model_path doesn't match!")

    expname = "resnet50_gpu%d_b%d_L%d_lr%.2f_v2" % (
        args.num_gpus,
        total_batch_size,
        args.num_labels,
        args.base_learning_rate,
    )
    explog = experiment_util.ModelTrainerLog(expname, args)

    # Run the training one epoch a time
    while epoch < args.num_epochs:
        epoch = RunEpoch(args, epoch, train_model, test_model,
                         total_batch_size, num_shards, expname, explog)

        # Save the model for each epoch
        SaveModel(args, train_model, epoch)

        model_path = "%s/%s_" % (args.file_store_path, args.save_model_name)
        # remove the saved model from the previous epoch if it exists
        if os.path.isfile(model_path + str(epoch - 1) + ".mdl"):
            os.remove(model_path + str(epoch - 1) + ".mdl")
Exemple #6
0
def Train(args):
    # Either use specified device list or generate one
    if args.gpus is not None:
        gpus = [int(x) for x in args.gpus.split(',')]
        num_gpus = len(gpus)
    else:
        gpus = list(range(args.num_gpus))
        num_gpus = args.num_gpus

    log.info("Running on GPUs: {}".format(gpus))

    # Verify valid batch size
    total_batch_size = args.batch_size
    batch_per_device = total_batch_size // num_gpus

    global_batch_size = total_batch_size * args.num_shards
    epoch_iters = int(args.epoch_size / global_batch_size)
    args.epoch_size = epoch_iters * global_batch_size
    log.info("Using epoch size: {}".format(args.epoch_size))

    train_arg_scope = {
        'order': 'NCHW',
        'use_cudnn': True,
        'cudnn_exhaustive_search': True,
        'ws_nbytes_limit': (args.cudnn_workspace_limit_mb * 1024 * 1024),
    }
    train_model = model_helper.ModelHelper(name="resnet101",
                                           arg_scope=train_arg_scope)

    num_shards = args.num_shards
    shard_id = args.shard_id
    interfaces = args.distributed_interfaces.split(",")

    if os.getenv("OMPI_COMM_WORLD_SIZE") is not None:
        num_shards = int(os.getenv("OMPI_COMM_WORLD_SIZE", 1))
        shard_id = int(os.getenv("OMPI_COMM_WORLD_RANK", 0))
        if num_shards > 1:
            rendezvous = dict(kv_handler=None,
                              num_shards=num_shards,
                              shard_id=shard_id,
                              engine="GLOO",
                              transport=args.distributed_transport,
                              interface=interfaces[0],
                              mpi_rendezvous=True,
                              exit_nets=None)

    elif num_shards > 1:
        store_handler = "store_handler"
        if args.redis_host is not None:
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "RedisStoreHandlerCreate",
                    [],
                    [store_handler],
                    host=args.redis_host,
                    port=args.redis_port,
                    prefix=args.run_id,
                ))
        else:
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "FileStoreHandlerCreate",
                    [],
                    [store_handler],
                    path=args.file_store_path,
                    prefix=args.run_id,
                ))

        rendezvous = dict(kv_handler=store_handler,
                          shard_id=shard_id,
                          num_shards=num_shards,
                          engine="GLOO",
                          transport=args.distributed_transport,
                          interface=interfaces[0],
                          exit_nets=None)

    else:
        rendezvous = None

    def create_resnet101_model_ops(model, loss_scale):
        initializer = (pFP16Initializer
                       if args.dtype == 'float16' else Initializer)

        with brew.arg_scope([brew.conv, brew.fc],
                            WeightInitializer=initializer,
                            BiasInitializer=initializer,
                            enable_tensor_core=args.enable_tensor_core,
                            float16_compute=args.float16_compute):
            pred = resnet.create_resnet101(
                model,
                "data",
                num_input_channels=args.num_channels,
                num_labels=args.num_labels,
                no_bias=True,
                no_loss=True,
            )

        if args.dtype == 'float16':
            pred = model.net.HalfToFloat(pred, pred + '_fp32')

        softmax, loss = model.SoftmaxWithLoss([pred, 'label'],
                                              ['softmax', 'loss'])
        loss = model.Scale(loss, scale=loss_scale)
        brew.accuracy(model, [softmax, "label"], "accuracy")
        return [loss]

    def add_optimizer(model):
        stepsz = int(30 * args.epoch_size / total_batch_size / num_shards)

        if args.float16_compute:
            opt = optimizer.build_fp16_sgd(model,
                                           args.base_learning_rate,
                                           momentum=0.9,
                                           nesterov=1,
                                           weight_decay=args.weight_decay,
                                           policy="step",
                                           stepsize=stepsz,
                                           gamma=0.1)
        else:
            optimizer.add_weight_decay(model, args.weight_decay)
            opt = optimizer.build_multi_precision_sgd(model,
                                                      args.base_learning_rate,
                                                      momentum=0.9,
                                                      nesterov=1,
                                                      policy="step",
                                                      stepsize=stepsz,
                                                      gamma=0.1)
        return opt

    if args.train_data == "null":

        def add_image_input(model):
            AddNullInput(
                model,
                None,
                batch_size=batch_per_device,
                img_size=args.image_size,
                dtype=args.dtype,
            )
    else:
        reader = train_model.CreateDB(
            "reader",
            db=args.train_data,
            db_type=args.db_type,
            num_shards=num_shards,
            shard_id=shard_id,
        )

        def add_image_input(model):
            AddImageInput(
                model,
                reader,
                batch_size=batch_per_device,
                img_size=args.image_size,
                dtype=args.dtype,
                is_test=False,
            )

    def add_post_sync_ops(model):
        for param_info in model.GetOptimizationParamInfo(model.GetParams()):
            if param_info.blob_copy is not None:
                model.param_init_net.HalfToFloat(
                    param_info.blob, param_info.blob_copy[core.DataType.FLOAT])

    data_parallel_model.Parallelize(
        train_model,
        input_builder_fun=add_image_input,
        forward_pass_builder_fun=create_resnet101_model_ops,
        optimizer_builder_fun=add_optimizer,
        post_sync_builder_fun=add_post_sync_ops,
        devices=gpus,
        rendezvous=rendezvous,
        optimize_gradient_memory=False,
        cpu_device=args.use_cpu,
        shared_model=args.use_cpu,
    )

    if args.model_parallel:
        activations = data_parallel_model_utils.GetActivationBlobs(train_model)
        data_parallel_model_utils.ShiftActivationDevices(
            train_model,
            activations=activations[len(activations) // 2:],
            shifts={g: args.num_gpus + g
                    for g in range(args.num_gpus)},
        )

    data_parallel_model.OptimizeGradientMemory(train_model, {}, set(), False)

    workspace.RunNetOnce(train_model.param_init_net)
    workspace.CreateNet(train_model.net)

    test_model = None
    if (args.test_data is not None):
        log.info("----- Create test net ----")
        test_arg_scope = {
            'order': "NCHW",
            'use_cudnn': True,
            'cudnn_exhaustive_search': True,
        }
        test_model = model_helper.ModelHelper(name="resnet101_test",
                                              arg_scope=test_arg_scope,
                                              init_params=False)

        test_reader = test_model.CreateDB(
            "test_reader",
            db=args.test_data,
            db_type=args.db_type,
        )

        def test_input_fn(model):
            AddImageInput(
                model,
                test_reader,
                batch_size=batch_per_device,
                img_size=args.image_size,
                dtype=args.dtype,
                is_test=True,
            )

        data_parallel_model.Parallelize(
            test_model,
            input_builder_fun=test_input_fn,
            forward_pass_builder_fun=create_resnet101_model_ops,
            post_sync_builder_fun=add_post_sync_ops,
            param_update_builder_fun=None,
            devices=gpus,
            cpu_device=args.use_cpu,
        )
        workspace.RunNetOnce(test_model.param_init_net)
        workspace.CreateNet(test_model.net)

    epoch = 0
    if args.load_model_path is not None:
        LoadModel(args.load_model_path, train_model)
        data_parallel_model.FinalizeAfterCheckpoint(train_model)
        last_str = args.load_model_path.split('_')[-1]
        if last_str.endswith('.mdl'):
            epoch = int(last_str[:-4])
            log.info("Reset epoch to {}".format(epoch))
        else:
            log.warning("The format of load_model_path doesn't match!")

    expname = "resnet101_gpu%d_b%d_L%d_lr%.2f_v2" % (
        args.num_gpus,
        total_batch_size,
        args.num_labels,
        args.base_learning_rate,
    )
    explog = experiment_util.ModelTrainerLog(expname, args)

    while epoch < args.num_epochs:
        epoch = RunEpoch(args, epoch, train_model, test_model,
                         total_batch_size, num_shards, expname, explog)
    # final save
    SaveModel(workspace, train_model)
Exemple #7
0
def extract_features(args):
    if args.gpus is not None:
        gpus = [int(x) for x in args.gpus.split(',')]
        num_gpus = len(gpus)
    else:
        gpus = range(args.num_gpus)
        num_gpus = args.num_gpus

    if num_gpus > 0:
        log.info("Running on GPUs: {}".format(gpus))
    else:
        log.info("Running on CPU")

    my_arg_scope = {
        'order': 'NCHW',
        'use_cudnn': True,
        'cudnn_exhaustive_search': True
    }

    model = cnn.CNNModelHelper(
        name="Extract Features",
        **my_arg_scope
    )

    video_input_args = dict(
        batch_size=args.batch_size,
        clip_per_video=args.clip_per_video,
        decode_type=args.decode_type,
        length_rgb=args.clip_length_rgb,
        sampling_rate_rgb=args.sampling_rate_rgb,
        scale_h=args.scale_h,
        scale_w=args.scale_w,
        crop_size=args.crop_size,
        video_res_type=args.video_res_type,
        short_edge=min(args.scale_h, args.scale_w),
        num_decode_threads=args.num_decode_threads,
        do_multi_label=args.multi_label,
        num_of_class=args.num_labels,
        random_mirror=False,
        random_crop=False,
        input_type=args.input_type,
        length_of=args.clip_length_of,
        sampling_rate_of=args.sampling_rate_of,
        frame_gap_of=args.frame_gap_of,
        do_flow_aggregation=args.do_flow_aggregation,
        flow_data_type=args.flow_data_type,
        get_rgb=args.input_type == 0,
        get_optical_flow=args.input_type == 1,
        get_video_id=args.get_video_id,
        get_start_frame=args.get_start_frame,
        use_local_file=args.use_local_file,
        crop_per_clip=args.crop_per_clip,
    )

    reader_args = dict(
        name="extract_features" + '_reader',
        input_data=os.path.join(vmz_data.VMZ_DIR, args.test_data),
    )

    reader, num_examples = reader_utils.create_data_reader(
        model,
        **reader_args
    )

    def input_fn(model):
        model_helper.AddVideoInput(
            model,
            reader,
            **video_input_args)

    def create_model_ops(model, loss_scale):
        return model_builder.build_model(
            model=model,
            model_name=args.model_name,
            model_depth=args.model_depth,
            num_labels=args.num_labels,
            batch_size=args.batch_size,
            num_channels=args.num_channels,
            crop_size=args.crop_size,
            clip_length=(
                args.clip_length_of if args.input_type == 1
                else args.clip_length_rgb
            ),
            loss_scale=loss_scale,
            is_test=1,
            multi_label=args.multi_label,
            channel_multiplier=args.channel_multiplier,
            bottleneck_multiplier=args.bottleneck_multiplier,
            use_dropout=args.use_dropout,
            use_convolutional_pred=args.use_convolutional_pred,
            use_pool1=args.use_pool1,
        )

    if num_gpus > 0:
        data_parallel_model.Parallelize_GPU(
            model,
            input_builder_fun=input_fn,
            forward_pass_builder_fun=create_model_ops,
            param_update_builder_fun=None,   # 'None' since we aren't training
            devices=gpus,
            optimize_gradient_memory=True,
        )
    else:
        model._device_type = caffe2_pb2.CPU
        model._devices = [0]
        device_opt = core.DeviceOption(model._device_type, 0)
        with core.DeviceScope(device_opt):
            # Because our loaded models are named with "gpu_x", keep the naming for now.
            # TODO: Save model using `data_parallel_model.ExtractPredictorNet`
            # to extract the model for "gpu_0". It also renames
            # the input and output blobs by stripping the "gpu_x/" prefix
            with core.NameScope("{}_{}".format("gpu", 0)):
                input_fn(model)
                create_model_ops(model, 1.0)

    workspace.RunNetOnce(model.param_init_net)
    workspace.CreateNet(model.net)

    if args.db_type == 'pickle':
        load_model_path = os.path.join(vmz_data.PRETRAINED_MODEL_DIR, args.load_model_path)
        model_loader.LoadModelFromPickleFile(model, load_model_path)
    elif args.db_type == 'minidb':
        if num_gpus > 0:
            model_helper.LoadModel(args.load_model_path, args.db_type)
        else:
            with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU, 0)):
                model_helper.LoadModel(args.load_model_path, args.db_type)
    else:
        log.warning("Unsupported db_type: {}".format(args.db_type))

    data_parallel_model.FinalizeAfterCheckpoint(model)

    def fetchActivations(model, outputs, num_iterations):

        all_activations = {}
        for counter in range(num_iterations):
            workspace.RunNet(model.net.Proto().name)

            num_devices = 1  # default for cpu
            if num_gpus > 0:
                num_devices = num_gpus
            for g in range(num_devices):
                for output_name in outputs:
                    blob_name = 'gpu_{}/'.format(g) + output_name
                    activations = workspace.FetchBlob(blob_name)
                    if output_name not in all_activations:
                        all_activations[output_name] = []
                    all_activations[output_name].append(activations)

            if counter % 20 == 0:
                log.info('{}/{} iterations'.format(counter, num_iterations))

        # each key holds a list of activations obtained from each minibatch.
        # we now concatenate these lists to get the final arrays.
        # concatenating during the loop requires a realloc and can get slow.
        for key in all_activations:
            all_activations[key] = np.concatenate(all_activations[key])

        return all_activations

    outputs = [name.strip() for name in args.features.split(',')]
    assert len(outputs) > 0

    if args.num_iterations > 0:
        num_iterations = args.num_iterations
    else:
        if num_gpus > 0:
            examples_per_iteration = args.batch_size * num_gpus
        else:
            examples_per_iteration = args.batch_size
        num_iterations = int(num_examples / examples_per_iteration)

    activations = fetchActivations(model, outputs, num_iterations)

    # saving extracted features
    for index in range(len(outputs)):
        log.info(
            "Read '{}' with shape {}".format(
                outputs[index],
                activations[outputs[index]].shape
            )
        )

    output_path = os.path.join(vmz_data.VMZ_FEATURE_DIR, args.output_path)
    if not os.path.exists(os.path.dirname(output_path)):
        os.makedirs(os.path.dirname(output_path))

    log.info('Writing to {}'.format(output_path))
    if args.save_h5:
        with h5py.File(output_path, 'w') as handle:
            for name, activation in activations.items():
                handle.create_dataset(name, data=activation)
    else:
        with open(output_path, 'wb') as handle:
            pickle.dump(activations, handle)

    # perform sanity check
    if args.sanity_check == 1:  # check clip accuracy
        assert args.multi_label == 0
        clip_acc = 0
        softmax = activations['softmax']
        label = activations['label']
        for i in range(len(softmax)):
            sorted_preds = \
                np.argsort(softmax[i])
            sorted_preds[:] = sorted_preds[::-1]
            if sorted_preds[0] == label[i]:
                clip_acc += 1
        log.info('Sanity check --- clip accuracy: {}'.format(
            clip_acc / len(softmax))
        )
    elif args.sanity_check == 2:  # check auc
        assert args.multi_label == 1
        prob = activations['prob']
        label = activations['label']
        mean_auc, mean_ap, mean_wap, _ = metric.mean_ap_metric(prob, label)
        log.info('Sanity check --- AUC: {}, mAP: {}, mWAP: {}'.format(
            mean_auc, mean_ap, mean_wap)
        )
Exemple #8
0
def Train(args):
    # Either use specified device list or generate one
    if args.gpus is not None:
        gpus = [int(x) for x in args.gpus.split(',')]
        num_gpus = len(gpus)
    else:
        gpus = list(range(args.num_gpus))
        num_gpus = args.num_gpus

    log.info("Running on GPUs: {}".format(gpus))

    # Verify valid batch size
    total_batch_size = args.batch_size
    batch_per_device = total_batch_size // num_gpus
    assert \
        total_batch_size % num_gpus == 0, \
        "Number of GPUs must divide batch size"

    # Round down epoch size to closest multiple of batch size across machines
    global_batch_size = total_batch_size * args.num_shards
    epoch_iters = int(args.epoch_size / global_batch_size)

    assert \
        epoch_iters > 0, \
        "Epoch size must be larger than batch size times shard count"

    args.epoch_size = epoch_iters * global_batch_size
    log.info("Using epoch size: {}".format(args.epoch_size))

    # Create ModelHelper object
    train_arg_scope = {
        'order': 'NCHW',
        'use_cudnn': True,
        'cudnn_exhaustive_search': True,
        'ws_nbytes_limit': (args.cudnn_workspace_limit_mb * 1024 * 1024),
    }
    train_model = model_helper.ModelHelper(name="resnet50",
                                           arg_scope=train_arg_scope)

    num_shards = args.num_shards
    shard_id = args.shard_id

    # Expect interfaces to be comma separated.
    # Use of multiple network interfaces is not yet complete,
    # so simply use the first one in the list.
    interfaces = args.distributed_interfaces.split(",")

    # Rendezvous using MPI when run with mpirun
    if os.getenv("OMPI_COMM_WORLD_SIZE") is not None:
        num_shards = int(os.getenv("OMPI_COMM_WORLD_SIZE", 1))
        shard_id = int(os.getenv("OMPI_COMM_WORLD_RANK", 0))
        if num_shards > 1:
            rendezvous = dict(kv_handler=None,
                              num_shards=num_shards,
                              shard_id=shard_id,
                              engine="GLOO",
                              transport=args.distributed_transport,
                              interface=interfaces[0],
                              mpi_rendezvous=True,
                              exit_nets=None)

    elif num_shards > 1:
        # Create rendezvous for distributed computation
        store_handler = "store_handler"
        if args.redis_host is not None:
            # Use Redis for rendezvous if Redis host is specified
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "RedisStoreHandlerCreate",
                    [],
                    [store_handler],
                    host=args.redis_host,
                    port=args.redis_port,
                    prefix=args.run_id,
                ))
        else:
            # Use filesystem for rendezvous otherwise
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "FileStoreHandlerCreate",
                    [],
                    [store_handler],
                    path=args.file_store_path,
                    prefix=args.run_id,
                ))

        rendezvous = dict(kv_handler=store_handler,
                          shard_id=shard_id,
                          num_shards=num_shards,
                          engine="GLOO",
                          transport=args.distributed_transport,
                          interface=interfaces[0],
                          exit_nets=None)

    else:
        rendezvous = None

    # Model building functions
    # def create_resnet50_model_ops(model, loss_scale):
    #     initializer = (PseudoFP16Initializer if args.dtype == 'float16'
    #                    else Initializer)

    #     with brew.arg_scope([brew.conv, brew.fc],
    #                         WeightInitializer=initializer,
    #                         BiasInitializer=initializer,
    #                         enable_tensor_core=args.enable_tensor_core,
    #                         float16_compute=args.float16_compute):
    #         pred = resnet.create_resnet50(
    #             #args.layers,
    #             model,
    #             "data",
    #             num_input_channels=args.num_channels,
    #             num_labels=args.num_labels,
    #             no_bias=True,
    #             no_loss=True,
    #         )

    #     if args.dtype == 'float16':
    #         pred = model.net.HalfToFloat(pred, pred + '_fp32')

    #     softmax, loss = model.SoftmaxWithLoss([pred, 'label'],
    #                                           ['softmax', 'loss'])
    #     loss = model.Scale(loss, scale=loss_scale)
    #     brew.accuracy(model, [softmax, "label"], "accuracy")
    #     return [loss]

    def create_model_ops(model, loss_scale):
        return create_model_ops_testable(model, loss_scale, is_test=False)

    def create_model_ops_test(model, loss_scale):
        return create_model_ops_testable(model, loss_scale, is_test=True)

    # Model building functions
    def create_model_ops_testable(model, loss_scale, is_test=False):
        initializer = (PseudoFP16Initializer
                       if args.dtype == 'float16' else Initializer)

        with brew.arg_scope([brew.conv, brew.fc],
                            WeightInitializer=initializer,
                            BiasInitializer=initializer,
                            enable_tensor_core=args.enable_tensor_core,
                            float16_compute=args.float16_compute):

            if args.model == "cifar10":
                if args.image_size != 32:
                    log.warn("Cifar10 expects a 32x32 image.")
                pred = models.cifar10.create_cifar10(
                    model,
                    "data",
                    image_channels=args.num_channels,
                    num_classes=args.num_labels,
                    image_height=args.image_size,
                    image_width=args.image_size,
                )
            elif args.model == "resnet32x32":
                if args.image_size != 32:
                    log.warn("ResNet32x32 expects a 32x32 image.")
                pred = models.resnet.create_resnet32x32(
                    model,
                    "data",
                    num_layers=args.num_layers,
                    num_input_channels=args.num_channels,
                    num_labels=args.num_labels,
                    is_test=is_test)
            elif args.model == "resnet":
                if args.image_size != 224:
                    log.warn(
                        "ResNet expects a 224x224 image. input image = %d" %
                        args.image_size)
                pred = resnet.create_resnet50(
                    #args.layers,
                    model,
                    "data",
                    num_input_channels=args.num_channels,
                    num_labels=args.num_labels,
                    no_bias=True,
                    no_loss=True,
                )
            elif args.model == "vgg":
                if args.image_size != 224:
                    log.warn("VGG expects a 224x224 image.")
                pred = vgg.create_vgg(model,
                                      "data",
                                      num_input_channels=args.num_channels,
                                      num_labels=args.num_labels,
                                      num_layers=args.num_layers,
                                      is_test=is_test)
            elif args.model == "googlenet":
                if args.image_size != 224:
                    log.warn("GoogLeNet expects a 224x224 image.")
                pred = googlenet.create_googlenet(
                    model,
                    "data",
                    num_input_channels=args.num_channels,
                    num_labels=args.num_labels,
                    is_test=is_test)
            elif args.model == "alexnet":
                if args.image_size != 224:
                    log.warn("Alexnet expects a 224x224 image.")
                pred = alexnet.create_alexnet(
                    model,
                    "data",
                    num_input_channels=args.num_channels,
                    num_labels=args.num_labels,
                    is_test=is_test)
            elif args.model == "alexnetv0":
                if args.image_size != 224:
                    log.warn("Alexnet v0 expects a 224x224 image.")
                pred = alexnet.create_alexnetv0(
                    model,
                    "data",
                    num_input_channels=args.num_channels,
                    num_labels=args.num_labels,
                    is_test=is_test)
            else:
                raise NotImplementedError("Network {} not found.".format(
                    args.model))

        if args.dtype == 'float16':
            pred = model.net.HalfToFloat(pred, pred + '_fp32')

        softmax, loss = model.SoftmaxWithLoss([pred, 'label'],
                                              ['softmax', 'loss'])
        loss = model.Scale(loss, scale=loss_scale)
        brew.accuracy(model, [softmax, "label"], "accuracy")
        return [loss]

    def add_optimizer(model):
        stepsz = int(30 * args.epoch_size / total_batch_size / num_shards)

        if args.float16_compute:
            # TODO: merge with multi-prceision optimizer
            opt = optimizer.build_fp16_sgd(
                model,
                args.base_learning_rate,
                momentum=0.9,
                nesterov=1,
                weight_decay=args.weight_decay,  # weight decay included
                policy="step",
                stepsize=stepsz,
                gamma=0.1)
        else:
            optimizer.add_weight_decay(model, args.weight_decay)
            opt = optimizer.build_multi_precision_sgd(model,
                                                      args.base_learning_rate,
                                                      momentum=0.9,
                                                      nesterov=1,
                                                      policy="step",
                                                      stepsize=stepsz,
                                                      gamma=0.1)
            print("info:===============================" + str(opt))
        return opt

    # Define add_image_input function.
    # Depends on the "train_data" argument.
    # Note that the reader will be shared with between all GPUS.
    if args.train_data == "null":

        def add_image_input(model):
            AddNullInput(
                model,
                None,
                batch_size=batch_per_device,
                img_size=args.image_size,
                dtype=args.dtype,
            )
    else:
        reader = train_model.CreateDB(
            "reader",
            db=args.train_data,
            db_type=args.db_type,
            num_shards=num_shards,
            shard_id=shard_id,
        )

        def add_image_input(model):
            AddImageInput(
                model,
                reader,
                batch_size=batch_per_device,
                img_size=args.image_size,
                dtype=args.dtype,
                is_test=False,
            )

    def add_post_sync_ops(model):
        """Add ops applied after initial parameter sync."""
        for param_info in model.GetOptimizationParamInfo(model.GetParams()):
            if param_info.blob_copy is not None:
                model.param_init_net.HalfToFloat(
                    param_info.blob, param_info.blob_copy[core.DataType.FLOAT])

    # Create parallelized model
    data_parallel_model.Parallelize(train_model,
                                    input_builder_fun=add_image_input,
                                    forward_pass_builder_fun=create_model_ops,
                                    optimizer_builder_fun=add_optimizer,
                                    post_sync_builder_fun=add_post_sync_ops,
                                    devices=gpus,
                                    rendezvous=rendezvous,
                                    optimize_gradient_memory=False,
                                    cpu_device=args.use_cpu,
                                    shared_model=args.use_cpu,
                                    combine_spatial_bn=args.use_cpu,
                                    use_nccl=args.use_nccl)

    if args.model_parallel:
        # Shift half of the activations to another GPU
        assert workspace.NumCudaDevices() >= 2 * args.num_gpus
        activations = data_parallel_model_utils.GetActivationBlobs(train_model)
        data_parallel_model_utils.ShiftActivationDevices(
            train_model,
            activations=activations[len(activations) // 2:],
            shifts={g: args.num_gpus + g
                    for g in range(args.num_gpus)},
        )

    data_parallel_model.OptimizeGradientMemory(train_model, {}, set(), False)

    workspace.RunNetOnce(train_model.param_init_net)
    workspace.CreateNet(train_model.net)

    if "GLOO_ALGORITHM" in os.environ and os.environ[
            "GLOO_ALGORITHM"] == "PHUB":
        #i need to communicate to PHub about the elements that need aggregation,
        #as well as their sizes.
        #at this stage, all i need is the name of keys and my key ID.
        grad_names = list(reversed(train_model._grad_names))
        phubKeyNames = ["allreduce_{}_status".format(x) for x in grad_names]
        caffe2GradSizes = dict(
            zip([
                data_parallel_model.stripBlobName(name) + "_grad"
                for name in train_model._parameters_info.keys()
            ], [x.size for x in train_model._parameters_info.values()]))
        phubKeySizes = [str(caffe2GradSizes[x]) for x in grad_names]
        if rendezvous["shard_id"] == 0:
            #only id 0 needs to send to rendezvous.
            r = redis.StrictRedis()
            #foreach key, I need to assign an ID
            joinedStr = ",".join(phubKeyNames)
            r.set("[PLink]IntegrationKeys", joinedStr)
            joinedStr = ",".join(phubKeySizes)
            r.set("[PLink]IntegrationKeySizes", joinedStr)

    # Add test model, if specified
    test_model = None
    if (args.test_data is not None):
        log.info("----- Create test net ----")
        test_arg_scope = {
            'order': "NCHW",
            'use_cudnn': True,
            'cudnn_exhaustive_search': True,
        }
        test_model = model_helper.ModelHelper(name="resnet50_test",
                                              arg_scope=test_arg_scope,
                                              init_params=False)

        test_reader = test_model.CreateDB(
            "test_reader",
            db=args.test_data,
            db_type=args.db_type,
        )

        def test_input_fn(model):
            AddImageInput(
                model,
                test_reader,
                batch_size=batch_per_device,
                img_size=args.image_size,
                dtype=args.dtype,
                is_test=True,
            )

        data_parallel_model.Parallelize(
            test_model,
            input_builder_fun=test_input_fn,
            forward_pass_builder_fun=create_model_ops_test,
            post_sync_builder_fun=add_post_sync_ops,
            param_update_builder_fun=None,
            devices=gpus,
            cpu_device=args.use_cpu,
        )
        workspace.RunNetOnce(test_model.param_init_net)
        workspace.CreateNet(test_model.net)

    epoch = 0
    # load the pre-trained model and reset epoch
    if args.load_model_path is not None:
        LoadModel(args.load_model_path, train_model)

        # Sync the model params
        data_parallel_model.FinalizeAfterCheckpoint(train_model)

        # reset epoch. load_model_path should end with *_X.mdl,
        # where X is the epoch number
        last_str = args.load_model_path.split('_')[-1]
        if last_str.endswith('.mdl'):
            epoch = int(last_str[:-4])
            log.info("Reset epoch to {}".format(epoch))
        else:
            log.warning("The format of load_model_path doesn't match!")

    expname = "resnet50_gpu%d_b%d_L%d_lr%.2f_v2" % (
        args.num_gpus,
        total_batch_size,
        args.num_labels,
        args.base_learning_rate,
    )

    explog = experiment_util.ModelTrainerLog(expname, args)

    # Run the training one epoch a time
    while epoch < args.num_epochs:
        epoch = RunEpoch(args, epoch, train_model, test_model,
                         total_batch_size, num_shards, expname, explog)

        # Save the model for each epoch
        SaveModel(args, train_model, epoch)

        model_path = "%s/%s_" % (args.file_store_path, args.save_model_name)
        # remove the saved model from the previous epoch if it exists
        if os.path.isfile(model_path + str(epoch - 1) + ".mdl"):
            os.remove(model_path + str(epoch - 1) + ".mdl")
def Train(args):
    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
    save_dir = os.path.join(args.file_store_path, subdir)
    if not os.path.exists(save_dir):  # Create the model directory if it doesn't exist
        os.mkdir(save_dir)

    # Either use specified device list or generate one
    if args.gpus is not None:
        gpus = [int(x) for x in args.gpus.split(',')]
        num_gpus = len(gpus)
    else:
        gpus = list(range(args.num_gpus))
        num_gpus = args.num_gpus

    log.info("Running on GPUs: {}".format(gpus))

    # Verify valid batch size
    total_batch_size = args.batch_size
    batch_per_device = total_batch_size // num_gpus
    assert \
        total_batch_size % num_gpus == 0, \
        "Number of GPUs must divide batch size"

    # Round down epoch size to closest multiple of batch size across machines
    global_batch_size = total_batch_size * args.num_shards
    epoch_iters = int(args.epoch_size / global_batch_size)
    args.epoch_size = epoch_iters * global_batch_size
    log.info("Using epoch size: {}".format(args.epoch_size))

    # Create ModelHelper object
    train_arg_scope = {
        'order': 'NCHW',
        'use_cudnn': True,
        'cudnn_exhaustive_search': True,
        'ws_nbytes_limit': (args.cudnn_workspace_limit_mb * 1024 * 1024),
    }
    train_model = model_helper.ModelHelper(
        name="sphereface", arg_scope=train_arg_scope
    )

    num_shards = args.num_shards
    shard_id = args.shard_id

    # Expect interfaces to be comma separated.
    # Use of multiple network interfaces is not yet complete,
    # so simply use the first one in the list.
    interfaces = args.distributed_interfaces.split(",")

    # Rendezvous using MPI when run with mpirun
    if os.getenv("OMPI_COMM_WORLD_SIZE") is not None:
        num_shards = int(os.getenv("OMPI_COMM_WORLD_SIZE", 1))
        shard_id = int(os.getenv("OMPI_COMM_WORLD_RANK", 0))
        if num_shards > 1:
            rendezvous = dict(
                kv_handler=None,
                num_shards=num_shards,
                shard_id=shard_id,
                engine="GLOO",
                transport=args.distributed_transport,
                interface=interfaces[0],
                mpi_rendezvous=True,
                exit_nets=None)

    elif num_shards > 1:
        # Create rendezvous for distributed computation
        store_handler = "store_handler"
        if args.redis_host is not None:
            # Use Redis for rendezvous if Redis host is specified
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "RedisStoreHandlerCreate", [], [store_handler],
                    host=args.redis_host,
                    port=args.redis_port,
                    prefix=args.run_id,
                )
            )
        else:
            # Use filesystem for rendezvous otherwise
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "FileStoreHandlerCreate", [], [store_handler],
                    path=args.file_store_path,
                    prefix=args.run_id,
                )
            )

        rendezvous = dict(
            kv_handler=store_handler,
            shard_id=shard_id,
            num_shards=num_shards,
            engine="GLOO",
            transport=args.distributed_transport,
            interface=interfaces[0],
            exit_nets=None)

    else:
        rendezvous = None

    # Model building functions
    def create_sphereface_model_ops(model, loss_scale):
        initializer = (pFP16Initializer if args.dtype == 'float16'
                       else Initializer)

        with brew.arg_scope([brew.conv, brew.fc],
                            WeightInitializer=initializer,
                            BiasInitializer=initializer,
                            enable_tensor_core=args.enable_tensor_core):
            pred = sphereface.create_net(
                model,
                "data",
                "label",
                in_dim=args.num_channels,
                class_num=args.num_labels,
                feature_dim=args.feature_dim,
                is_test=False,
                no_loss=True,
                fp16_data=True if args.dtype == 'float16' else False,
            )

        if args.dtype == 'float16':
            pred = model.net.HalfToFloat(pred, pred + '_fp32')

        softmax, loss = model.SoftmaxWithLoss([pred, 'label'],
                                              ['softmax', 'loss'])
        loss = model.Scale(loss, scale=loss_scale)
        brew.accuracy(model, [softmax, "label"], "accuracy")
        return [loss]

    def add_optimizer(model):
        # stepsz = int(30 * args.epoch_size / total_batch_size / num_shards)
        stepsz = 1
        if args.dtype == 'float16':
            opt = optimizer.build_fp16_sgd(
                model,
                args.base_learning_rate,
                momentum=0.9,
                nesterov=1,
                weight_decay=args.weight_decay,   # weight decay included
                policy="step",
                stepsize=stepsz,
                gamma=0.9999
            )
        else:
            optimizer.add_weight_decay(model, args.weight_decay)
            opt = optimizer.build_multi_precision_sgd(
                model,
                args.base_learning_rate,
                momentum=0.9,
                nesterov=1,
                policy="step",
                stepsize=stepsz,
                gamma=0.9999
            )
        return opt

    # Define add_image_input function.
    # Depends on the "train_data" argument.
    # Note that the reader will be shared with between all GPUS.
    if args.train_data == "null":
        def add_image_input(model):
            AddNullInput(
                model,
                None,
                batch_size=batch_per_device,
                img_size=args.image_size,
                dtype=args.dtype,
            )
    else:
        reader = train_model.CreateDB(
            "reader",
            db=args.train_data,
            db_type=args.db_type,
            num_shards=num_shards,
            shard_id=shard_id,
        )

        def add_image_input(model):
            AddImageInput(
                model,
                reader,
                batch_size=batch_per_device,
                img_size=args.image_size,
                dtype=args.dtype,
                is_test=False,
            )

    def add_post_sync_ops(model):
        """Add ops applied after initial parameter sync."""
        for param_info in model.GetOptimizationParamInfo(model.GetParams()):
            if param_info.blob_copy is not None:
                model.param_init_net.HalfToFloat(
                    param_info.blob,
                    param_info.blob_copy[core.DataType.FLOAT]
                )

    # Create parallelized model
    data_parallel_model.Parallelize(
        train_model,
        input_builder_fun=add_image_input,
        forward_pass_builder_fun=create_sphereface_model_ops,
        optimizer_builder_fun=add_optimizer,
        post_sync_builder_fun=add_post_sync_ops,
        devices=gpus,
        rendezvous=rendezvous,
        optimize_gradient_memory=True,
        cpu_device=args.use_cpu,
        shared_model=args.use_cpu,
    )

    workspace.RunNetOnce(train_model.param_init_net)
    workspace.CreateNet(train_model.net)


    # Add test model, if specified
    test_model = None
    if (args.test_data is not None):
        log.info("----- Create test net ----")
        test_arg_scope = {
            'order': "NCHW",
            'use_cudnn': True,
            'cudnn_exhaustive_search': True,
        }
        test_model = model_helper.ModelHelper(
            name="sphereface_test", arg_scope=test_arg_scope, init_params=False
        )

        test_reader = test_model.CreateDB(
            "test_reader",
            db=args.test_data,
            db_type=args.db_type,
        )

        def test_input_fn(model):
            AddImageInput(
                model,
                test_reader,
                batch_size=batch_per_device,
                img_size=args.image_size,
                dtype=args.dtype,
                is_test=True,
            )

        data_parallel_model.Parallelize(
            test_model,
            input_builder_fun=test_input_fn,
            forward_pass_builder_fun=create_sphereface_model_ops,
            post_sync_builder_fun=add_post_sync_ops,
            param_update_builder_fun=None,
            devices=gpus,
            cpu_device=args.use_cpu,
        )
        workspace.RunNetOnce(test_model.param_init_net)
        workspace.CreateNet(test_model.net)
        graph = net_drawer2.GetPydotGraphMinimal(test_model.net.Proto(),
                                                "sphereface", 
                                                rankdir="TB")
        graph.write(os.path.join(save_dir, "sphereface.pdf"), format='pdf')

    epoch = 0
    # load the pre-trained model and reset epoch
    if args.load_model_path is not None:
        LoadModel(args.load_model_path, train_model)

        # Sync the model params
        data_parallel_model.FinalizeAfterCheckpoint(train_model)

        # reset epoch. load_model_path should end with *_X.mdl,
        # where X is the epoch number
        last_str = args.load_model_path.split('_')[-1]
        if last_str.endswith('.mdl'):
            epoch = int(last_str[:-4])
            log.info("Reset epoch to {}".format(epoch))
        else:
            log.warning("The format of load_model_path doesn't match!")

    expname = "sphereface_gpu%d_b%d_L%d_lr%.2f_v2" % (
        args.num_gpus,
        total_batch_size,
        args.num_labels,
        args.base_learning_rate,
    )

    explog = experiment_util.ModelTrainerLog(os.path.join(save_dir, expname), args)

    kernel_fig, plt_kernel = plt.subplots(nrows=4, ncols=5, figsize=(14, 14))
    loss_fig, plt_loss = plt.subplots(1)
    plt.tight_layout(h_pad=0, w_pad=0)
    plt.ion()

    iterations = 0
    old_x = 0
    old_loss = 0
    old_acc = 0
    while epoch < args.num_epochs or args.test_data_type != 'VAL':
        epoch, epoch_loss, epoch_accuracy = RunEpoch(
            args,
            epoch,
            train_model,
            test_model,
            total_batch_size,
            num_shards,
            explog,
            plt_kernel
        )

        x = list(range(iterations, iterations + len(epoch_loss)))
        x.insert(0, old_x)
        epoch_loss.insert(0, old_loss)
        epoch_accuracy.insert(0, old_acc)
        plt_loss.plot(x, epoch_loss, 'b')
        plt_loss.plot(x, epoch_accuracy, 'r')
        iterations += len(epoch_loss)
        old_x = iterations - 2
        old_loss = epoch_loss[-1]
        old_acc = epoch_accuracy[-1]

        log.info('Save checkpoint {}'.format(epoch))
        model_path = '{:s}/{:s}_{:d}.mdl'.format(save_dir, args.save_model_name, epoch)
        SaveModel(args, train_model, model_path)
        if DEBUG_TRAINING:
            kernel_fig_path = '%s/%s_%d.jpg' % (save_dir, 'activation', epoch)
            loss_fig_path = '%s/%s_%d.jpg' % (save_dir, 'loss', epoch)
            kernel_fig.savefig(kernel_fig_path)
            loss_fig.savefig(loss_fig_path)
def Train(args):
    # Either use specified device list or generate one
    if args.gpus is not None:
        gpus = [int(x) for x in args.gpus.split(',')]
        num_gpus = len(gpus)
    else:
        gpus = list(range(args.num_gpus))
        num_gpus = args.num_gpus

    log.info("Running on GPUs: {}".format(gpus))

    # Verify valid batch size
    total_batch_size = args.batch_size
    batch_per_device = total_batch_size // num_gpus
    assert \
        total_batch_size % num_gpus == 0, \
        "Number of GPUs must divide batch size"

    # Round down epoch size to closest multiple of batch size across machines
    global_batch_size = total_batch_size * args.num_shards
    epoch_iters = int(args.epoch_size / global_batch_size)
    args.epoch_size = epoch_iters * global_batch_size
    log.info("Using epoch size: {}".format(args.epoch_size))

    # Create ModelHelper object
    train_arg_scope = {
        'order': 'NCHW',
        'use_cudnn': True,
        'cudnn_exhaustive_search': True,
        'ws_nbytes_limit': (args.cudnn_workspace_limit_mb * 1024 * 1024),
    }
    train_model = model_helper.ModelHelper(name="resnet50",
                                           arg_scope=train_arg_scope)

    num_shards = args.num_shards
    shard_id = args.shard_id
    if num_shards > 1:
        # Create rendezvous for distributed computation
        store_handler = "store_handler"
        if args.redis_host is not None:
            # Use Redis for rendezvous if Redis host is specified
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "RedisStoreHandlerCreate",
                    [],
                    [store_handler],
                    host=args.redis_host,
                    port=args.redis_port,
                    prefix=args.run_id,
                ))
        else:
            # Use filesystem for rendezvous otherwise
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "FileStoreHandlerCreate",
                    [],
                    [store_handler],
                    path=args.file_store_path,
                    prefix=args.run_id,
                ))
        rendezvous = dict(kv_handler=store_handler,
                          shard_id=shard_id,
                          num_shards=num_shards,
                          engine="GLOO",
                          exit_nets=None)
    else:
        rendezvous = None

    # Model building functions
    def create_resnet50_model_ops(model, loss_scale):
        initializer = (pFP16Initializer
                       if args.dtype == 'float16' else Initializer)

        with brew.arg_scope([brew.conv, brew.fc],
                            WeightInitializer=initializer,
                            BiasInitializer=initializer,
                            enable_tensor_core=args.enable_tensor_core):
            pred = resnet.create_resnet50(
                model,
                "data",
                num_input_channels=args.num_channels,
                num_labels=args.num_labels,
                no_bias=True,
                no_loss=True,
            )

        if args.dtype == 'float16':
            pred = model.net.HalfToFloat(pred, pred + '_fp32')

        softmax, loss = model.SoftmaxWithLoss([pred, 'label'],
                                              ['softmax', 'loss'])
        loss = model.Scale(loss, scale=loss_scale)
        brew.accuracy(model, [softmax, "label"], "accuracy")
        return [loss]

    def add_optimizer(model):
        stepsz = int(30 * args.epoch_size / total_batch_size / num_shards)
        optimizer.add_weight_decay(model, args.weight_decay)
        opt = optimizer.build_multi_precision_sgd(model,
                                                  args.base_learning_rate,
                                                  momentum=0.9,
                                                  nesterov=1,
                                                  policy="step",
                                                  stepsize=stepsz,
                                                  gamma=0.1)
        return opt

    # Input. Note that the reader must be shared with all GPUS.
    reader = train_model.CreateDB(
        "reader",
        db=args.train_data,
        db_type=args.db_type,
        num_shards=num_shards,
        shard_id=shard_id,
    )

    def add_image_input(model):
        AddImageInput(
            model,
            reader,
            batch_size=batch_per_device,
            img_size=args.image_size,
            dtype=args.dtype,
        )

    def add_post_sync_ops(model):
        """Add ops applied after initial parameter sync."""
        for param_info in model.GetOptimizationParamInfo(model.GetParams()):
            if param_info.blob_copy is not None:
                model.param_init_net.HalfToFloat(
                    param_info.blob, param_info.blob_copy[core.DataType.FLOAT])

    # Create parallelized model
    data_parallel_model.Parallelize(
        train_model,
        input_builder_fun=add_image_input,
        forward_pass_builder_fun=create_resnet50_model_ops,
        optimizer_builder_fun=add_optimizer,
        post_sync_builder_fun=add_post_sync_ops,
        devices=gpus,
        rendezvous=rendezvous,
        optimize_gradient_memory=True,
        cpu_device=args.use_cpu,
    )

    # Add test model, if specified
    test_model = None
    if (args.test_data is not None):
        log.info("----- Create test net ----")
        test_arg_scope = {
            'order': "NCHW",
            'use_cudnn': True,
            'cudnn_exhaustive_search': True,
        }
        test_model = model_helper.ModelHelper(name="resnet50_test",
                                              arg_scope=test_arg_scope,
                                              init_params=False)

        test_reader = test_model.CreateDB(
            "test_reader",
            db=args.test_data,
            db_type=args.db_type,
        )

        def test_input_fn(model):
            AddImageInput(
                model,
                test_reader,
                batch_size=batch_per_device,
                img_size=args.image_size,
                dtype=args.dtype,
            )

        data_parallel_model.Parallelize(
            test_model,
            input_builder_fun=test_input_fn,
            forward_pass_builder_fun=create_resnet50_model_ops,
            post_sync_builder_fun=add_post_sync_ops,
            param_update_builder_fun=None,
            devices=gpus,
            cpu_device=args.use_cpu,
        )
        workspace.RunNetOnce(test_model.param_init_net)
        workspace.CreateNet(test_model.net)

    workspace.RunNetOnce(train_model.param_init_net)
    workspace.CreateNet(train_model.net)

    epoch = 0
    # load the pre-trained model and reset epoch
    if args.load_model_path is not None:
        LoadModel(args.load_model_path, train_model)

        # Sync the model params
        print("=-=111=")
        data_parallel_model.FinalizeAfterCheckpoint(train_model)
        print("=-=====")

        # reset epoch. load_model_path should end with *_X.mdl,
        # where X is the epoch number
        last_str = args.load_model_path.split('_')[-1]
        if last_str.endswith('.mdl'):
            epoch = int(last_str[:-4])
            log.info("Reset epoch to {}".format(epoch))
        else:
            log.warning("The format of load_model_path doesn't match!")

    expname = "resnet50_gpu%d_b%d_L%d_lr%.2f_v2" % (
        args.num_gpus,
        total_batch_size,
        args.num_labels,
        args.base_learning_rate,
    )
    explog = experiment_util.ModelTrainerLog(expname, args)

    # Run the training one epoch a time
    while epoch < args.num_epochs:
        epoch = RunEpoch(args, epoch, train_model, test_model,
                         total_batch_size, num_shards, expname, explog)

        # Save the model for each epoch
        SaveModel(args, train_model, epoch)

        model_path = "%s/%s_" % (args.file_store_path, args.save_model_name)
Exemple #11
0
def Test(args):
    if args.gpus is not None:
        gpus = [int(x) for x in args.gpus.split(',')]
        num_gpus = len(gpus)
    else:
        gpus = range(args.num_gpus)
        num_gpus = args.num_gpus

    if num_gpus > 0:
        total_batch_size = args.batch_size * num_gpus
        log.info("Running on GPUs: {}".format(gpus))
        log.info("total_batch_size: {}".format(total_batch_size))
    else:
        total_batch_size = args.batch_size
        log.info("Running on CPU")
        log.info("total_batch_size: {}".format(total_batch_size))

    # Model building functions
    def create_model_ops(model, loss_scale):
        return model_builder.build_model(
            model=model,
            model_name=args.model_name,
            model_depth=args.model_depth,
            num_labels=args.num_labels,
            num_channels=args.num_channels,
            crop_size=args.crop_size,
            clip_length=(
                args.clip_length_of if args.input_type == 1
                else args.clip_length_rgb
            ),
            loss_scale=loss_scale,
            is_test=1,
            pred_layer_name=args.pred_layer_name,
        )

    test_model = cnn.CNNModelHelper(
        order="NCHW",
        name="video_model_test",
        use_cudnn=(True if args.use_cudnn == 1 else False),
        cudnn_exhaustive_search=True,
    )

    test_reader, number_of_examples = model_builder.create_data_reader(
        test_model,
        name="test_reader",
        input_data=args.test_data,
    )

    if args.num_iter <= 0:
        num_iter = int(number_of_examples / total_batch_size)
    else:
        num_iter = args.num_iter

    def test_input_fn(model):
        model_helper.AddVideoInput(
            test_model,
            test_reader,
            batch_size=args.batch_size,
            clip_per_video=args.clip_per_video,
            decode_type=1,
            length_rgb=args.clip_length_rgb,
            sampling_rate_rgb=args.sampling_rate_rgb,
            scale_h=args.scale_h,
            scale_w=args.scale_w,
            crop_size=args.crop_size,
            num_decode_threads=4,
            num_of_class=args.num_labels,
            random_mirror=False,
            random_crop=False,
            input_type=args.input_type,
            length_of=args.clip_length_of,
            sampling_rate_of=args.sampling_rate_of,
            frame_gap_of=args.frame_gap_of,
            do_flow_aggregation=args.do_flow_aggregation,
            flow_data_type=args.flow_data_type,
            get_rgb=(args.input_type == 0),
            get_optical_flow=(args.input_type == 1),
            get_video_id=args.get_video_id,
            use_local_file=args.use_local_file,
        )

    if num_gpus > 0:
        data_parallel_model.Parallelize_GPU(
            test_model,
            input_builder_fun=test_input_fn,
            forward_pass_builder_fun=create_model_ops,
            param_update_builder_fun=None,
            devices=gpus
        )
    else:
        test_model._device_type = caffe2_pb2.CPU
        test_model._devices = [0]
        device_opt = core.DeviceOption(test_model._device_type, 0)
        with core.DeviceScope(device_opt):
            # Because our loaded models are named with "gpu_x", keep the naming for now.
            # TODO: Save model using `data_parallel_model.ExtractPredictorNet`
            # to extract the model for "gpu_0". It also renames
            # the input and output blobs by stripping the "gpu_x/" prefix
            with core.NameScope("{}_{}".format("gpu", 0)):
                test_input_fn(test_model)
                create_model_ops(test_model, 1.0)

    workspace.RunNetOnce(test_model.param_init_net)
    workspace.CreateNet(test_model.net)

    if args.db_type == 'minidb':
        if num_gpus > 0:
            model_helper.LoadModel(args.load_model_path, args.db_type)
            data_parallel_model.FinalizeAfterCheckpoint(test_model)
        else:
            with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU, 0)):
                model_helper.LoadModel(args.load_model_path, args.db_type)
    elif args.db_type == 'pickle':
        if num_gpus > 0:
            model_loader.LoadModelFromPickleFile(
                test_model,
                args.load_model_path,
                use_gpu=True,
                root_gpu_id=gpus[0]
            )
            data_parallel_model.FinalizeAfterCheckpoint(test_model)
        else:
            model_loader.LoadModelFromPickleFile(
                test_model,
                args.load_model_path,
                use_gpu=False
            )
    else:
        log.warning("Unsupported db_type: {}".format(args.db_type))


    # metric counters for classification
    clip_acc = 0
    video_top1 = 0
    video_topk = 0
    video_count = 0
    clip_count = 0

    for i in range(num_iter):
        workspace.RunNet(test_model.net.Proto().name)
        num_devices = 1  # default for cpu
        if args.num_gpus > 0:
            num_devices = args.num_gpus

        for g in range(num_devices):
            # get labels
            label = workspace.FetchBlob(
                "gpu_{}".format(g) + '/label'
            )
            # get predictions
            predicts = workspace.FetchBlob("gpu_{}".format(g) + '/softmax')
            assert predicts.shape[0] == args.batch_size * args.clip_per_video

            for j in range(args.batch_size):
                # get label for one video
                sample_label = label[j * args.clip_per_video]
                # get clip accuracy
                for k in range(args.clip_per_video):
                    c1, _ = metric.accuracy_metric(
                        predicts[j * args.clip_per_video + k, :],
                        label[j * args.clip_per_video + k])
                    clip_acc = clip_acc + c1
                # get all clip predictions for one video
                all_clips = predicts[
                    j * args.clip_per_video:(j + 1) * args.clip_per_video, :]
                # aggregate predictions into one
                video_pred = PredictionAggregation(all_clips, args.aggregation)
                c1, ck = metric.accuracy_metric(
                    video_pred, sample_label, args.top_k)
                video_top1 = video_top1 + c1
                video_topk = video_topk + ck

            video_count = video_count + args.batch_size
            clip_count = clip_count + label.shape[0]

        if i > 0 and i % args.display_iter == 0:
            log.info('Iter {}/{}: clip: {}, top1: {}, top 5: {}'.format(
                i,
                num_iter,
                clip_acc / clip_count,
                video_top1 / video_count,
                video_topk / video_count))

    log.info("Test accuracy: clip: {}, top 1: {}, top{}: {}".format(
        clip_acc / clip_count,
        video_top1 / video_count,
        args.top_k,
        video_topk / video_count
    ))

    if num_gpus > 0:
        flops, params = model_helper.GetFlopsAndParams(test_model, gpus[0])
    else:
        flops, params = model_helper.GetFlopsAndParams(test_model)
    log.info('FLOPs: {}, params: {}'.format(flops, params))
Exemple #12
0
def ExtractFeatures(args):
    if args.gpus is not None:
        gpus = [int(x) for x in args.gpus.split(',')]
        num_gpus = len(gpus)
    else:
        gpus = range(args.num_gpus)
        num_gpus = args.num_gpus

    if num_gpus > 0:
        log.info("Running on GPUs: {}".format(gpus))
    else:
        log.info("Running on CPU")

    log.info("Running on GPUs: {}".format(gpus))

    my_arg_scope = {
        'order': 'NCHW',
        'use_cudnn': True,
        'cudnn_exhaustive_search': True
    }

    model = cnn.CNNModelHelper(name="Extract Features", **my_arg_scope)

    reader, num_examples = model_builder.create_data_reader(
        model,
        name="reader",
        input_data=args.test_data,
    )

    def input_fn(model):
        model_helper.AddVideoInput(
            model,
            reader,
            batch_size=args.batch_size,
            clip_per_video=args.clip_per_video,
            decode_type=args.decode_type,
            length_rgb=args.clip_length_rgb,
            sampling_rate_rgb=args.sampling_rate_rgb,
            scale_h=args.scale_h,
            scale_w=args.scale_w,
            crop_size=args.crop_size,
            num_decode_threads=args.num_decode_threads,
            num_of_class=args.num_labels,
            random_mirror=False,
            random_crop=False,
            input_type=args.input_type,
            length_of=args.clip_length_of,
            sampling_rate_of=args.sampling_rate_of,
            frame_gap_of=args.frame_gap_of,
            do_flow_aggregation=args.do_flow_aggregation,
            flow_data_type=args.flow_data_type,
            get_rgb=(args.input_type == 0),
            get_optical_flow=(args.input_type == 1),
            get_video_id=args.get_video_id,
            use_local_file=args.use_local_file,
        )

    def create_model_ops(model, loss_scale):
        return model_builder.build_model(
            model=model,
            model_name=args.model_name,
            model_depth=args.model_depth,
            num_labels=args.num_labels,
            num_channels=args.num_channels,
            crop_size=args.crop_size,
            clip_length=(args.clip_length_of
                         if args.input_type == 1 else args.clip_length_rgb),
            loss_scale=loss_scale,
            is_test=1,
        )

    if num_gpus > 0:
        data_parallel_model.Parallelize_GPU(
            model,
            input_builder_fun=input_fn,
            forward_pass_builder_fun=create_model_ops,
            param_update_builder_fun=None,  # 'None' since we aren't training
            devices=gpus,
        )
    else:
        model._device_type = caffe2_pb2.CPU
        model._devices = [0]
        device_opt = core.DeviceOption(model._device_type, 0)
        with core.DeviceScope(device_opt):
            with core.NameScope("{}_{}".format("gpu", 0)):
                input_fn(model)
                create_model_ops(model, 1.0)

    workspace.RunNetOnce(model.param_init_net)
    workspace.CreateNet(model.net)

    if args.db_type == 'minidb':
        if num_gpus > 0:
            model_helper.LoadModel(args.load_model_path, args.db_type)
            data_parallel_model.FinalizeAfterCheckpoint(model)
        else:
            with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU, 0)):
                model_helper.LoadModel(args.load_model_path, args.db_type)
    elif args.db_type == 'pickle':
        if num_gpus > 0:
            model_loader.LoadModelFromPickleFile(model,
                                                 args.load_model_path,
                                                 use_gpu=True,
                                                 root_gpu_id=gpus[0])
        else:
            model_loader.LoadModelFromPickleFile(
                model,
                args.load_model_path,
                use_gpu=False,
            )
    else:
        log.warning("Unsupported db_type: {}".format(args.db_type))

    def fetchActivations(model, outputs, num_iterations):

        all_activations = {}
        for counter in range(num_iterations):
            workspace.RunNet(model.net.Proto().name)
            num_devices = 1  # default for cpu

            for g in gpus if num_gpus > 0 else range(num_devices):
                for output_name in outputs:
                    blob_name = 'gpu_{}/'.format(g) + output_name
                    activations = workspace.FetchBlob(blob_name)
                    if output_name not in all_activations:
                        all_activations[output_name] = []
                    all_activations[output_name].append(activations)

            if counter % 20 == 0:
                log.info('{}/{} iterations'.format(counter, num_iterations))

        # each key holds a list of activations obtained from each minibatch.
        # we now concatenate these lists to get the final arrays.
        # concatenating during the loop requires a realloc and can get slow.
        for key in all_activations:
            all_activations[key] = np.concatenate(all_activations[key])

        return all_activations

    outputs = [name.strip() for name in args.features.split(',')]
    assert len(outputs) > 0

    if args.num_iterations > 0:
        num_iterations = args.num_iterations
    else:
        if num_gpus > 0:
            examples_per_iteration = args.batch_size * num_gpus
        else:
            examples_per_iteration = args.batch_size
        num_iterations = int(num_examples / examples_per_iteration)

    activations = fetchActivations(model, outputs, num_iterations)

    # saving extracted features
    for index in range(len(outputs)):
        log.info("Read '{}' with shape {}".format(
            outputs[index], activations[outputs[index]].shape))

    if args.output_path:
        output_path = args.output_path
    else:
        output_path = os.path.dirname(args.test_data) + '/features.pickle'

    log.info('Writing to {}'.format(output_path))
    with open(output_path, 'wb') as handle:
        pickle.dump(activations, handle)

    # perform sanity check
    if args.sanity_check == 1:  # check clip accuracy
        clip_acc = 0
        softmax = activations['softmax']
        label = activations['label']
        for i in range(len(softmax)):
            sorted_preds = \
                np.argsort(softmax[i])
            sorted_preds[:] = sorted_preds[::-1]
            if sorted_preds[0] == label[i]:
                clip_acc += 1
        log.info('Sanity check --- clip accuracy: {}'.format(clip_acc /
                                                             len(softmax)))
Exemple #13
0
def Test(args):
    if args.gpus is not None:
        gpus = [int(x) for x in args.gpus.split(',')]
        num_gpus = len(gpus)
    else:
        gpus = range(args.num_gpus)
        num_gpus = args.num_gpus

    if num_gpus > 0:
        total_batch_size = args.batch_size * num_gpus
        log.info("Running on GPUs: {}".format(gpus))
        log.info("total_batch_size: {}".format(total_batch_size))
    else:
        total_batch_size = args.batch_size
        log.info("Running on CPU")
        log.info("total_batch_size: {}".format(total_batch_size))

    video_input_args = dict(
        batch_size=args.batch_size,
        clip_per_video=args.clip_per_video,
        decode_type=1,
        length_rgb=args.clip_length_rgb,
        sampling_rate_rgb=args.sampling_rate_rgb,
        scale_h=args.scale_h,
        scale_w=args.scale_w,
        crop_size=args.crop_size,
        video_res_type=args.video_res_type,
        short_edge=min(args.scale_h, args.scale_w),
        num_decode_threads=args.num_decode_threads,
        do_multi_label=args.multi_label,
        num_of_class=args.num_labels,
        random_mirror=False,
        random_crop=False,
        input_type=args.input_type,
        length_of=args.clip_length_of,
        sampling_rate_of=args.sampling_rate_of,
        frame_gap_of=args.frame_gap_of,
        do_flow_aggregation=args.do_flow_aggregation,
        flow_data_type=args.flow_data_type,
        get_rgb=(args.input_type == 0 or args.input_type >= 3),
        get_optical_flow=(args.input_type == 1 or args.input_type >= 4),
        use_local_file=args.use_local_file,
        crop_per_clip=args.crop_per_clip,
    )

    reader_args = dict(
        name="test_reader",
        input_data=args.test_data,
    )

    # Model building functions
    def create_model_ops(model, loss_scale):
        return model_builder.build_model(
            model=model,
            model_name=args.model_name,
            model_depth=args.model_depth,
            num_labels=args.num_labels,
            batch_size=args.batch_size * args.clip_per_video *
            args.crop_per_clip,
            num_channels=args.num_channels,
            crop_size=args.crop_size,
            clip_length=(args.clip_length_of
                         if args.input_type == 1 else args.clip_length_rgb),
            loss_scale=loss_scale,
            is_test=1,
            pred_layer_name=args.pred_layer_name,
            multi_label=args.multi_label,
            channel_multiplier=args.channel_multiplier,
            bottleneck_multiplier=args.bottleneck_multiplier,
            use_dropout=args.use_dropout,
            conv1_temporal_stride=args.conv1_temporal_stride,
            conv1_temporal_kernel=args.conv1_temporal_kernel,
            use_convolutional_pred=args.use_convolutional_pred,
            use_pool1=args.use_pool1,
        )

    test_model = cnn.CNNModelHelper(
        order="NCHW",
        name="video_model_test",
        use_cudnn=(True if args.use_cudnn == 1 else False),
        cudnn_exhaustive_search=True,
    )

    test_reader, number_of_examples = reader_utils.create_data_reader(
        test_model, **reader_args)

    if args.num_iter <= 0:
        num_iter = int(math.ceil(number_of_examples / total_batch_size))
    else:
        num_iter = args.num_iter

    def test_input_fn(model):
        model_helper.AddVideoInput(test_model, test_reader, **video_input_args)

    if num_gpus > 0:
        data_parallel_model.Parallelize_GPU(
            test_model,
            input_builder_fun=test_input_fn,
            forward_pass_builder_fun=create_model_ops,
            param_update_builder_fun=None,
            devices=gpus,
            optimize_gradient_memory=True,
        )
    else:
        test_model._device_type = caffe2_pb2.CPU
        test_model._devices = [0]
        device_opt = core.DeviceOption(test_model._device_type, 0)
        with core.DeviceScope(device_opt):
            # Because our loaded models are named with "gpu_x", keep the naming for now.
            # TODO: Save model using `data_parallel_model.ExtractPredictorNet`
            # to extract the model for "gpu_0". It also renames
            # the input and output blobs by stripping the "gpu_x/" prefix
            with core.NameScope("{}_{}".format("gpu", 0)):
                test_input_fn(test_model)
                create_model_ops(test_model, 1.0)

    workspace.RunNetOnce(test_model.param_init_net)
    workspace.CreateNet(test_model.net)

    if args.db_type == 'minidb':
        if num_gpus > 0:
            model_helper.LoadModel(args.load_model_path, args.db_type)
        else:
            with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU, 0)):
                model_helper.LoadModel(args.load_model_path, args.db_type)
    elif args.db_type == 'pickle':
        if num_gpus > 0:
            model_loader.LoadModelFromPickleFile(test_model,
                                                 args.load_model_path,
                                                 use_gpu=True,
                                                 root_gpu_id=gpus[0])
        else:
            model_loader.LoadModelFromPickleFile(test_model,
                                                 args.load_model_path,
                                                 use_gpu=False)
    else:
        log.warning("Unsupported db_type: {}".format(args.db_type))

    data_parallel_model.FinalizeAfterCheckpoint(test_model)

    # metric couters for multilabel
    all_prob_for_map = np.empty(shape=[0, args.num_labels], dtype=np.float)
    all_label_for_map = np.empty(shape=[0, args.num_labels], dtype=np.int32)

    # metric counters for closed-world classification
    clip_acc = 0
    video_top1 = 0
    video_topk = 0
    video_count = 0
    clip_count = 0
    crop_per_video = args.clip_per_video * args.crop_per_clip
    for i in range(num_iter):
        workspace.RunNet(test_model.net.Proto().name)

        num_devices = 1  # default for cpu
        if num_gpus > 0:
            num_devices = num_gpus

        for g in range(num_devices):
            # get labels
            label = workspace.FetchBlob("gpu_{}".format(g) + '/label')
            # get predictions
            if args.multi_label:
                predicts = workspace.FetchBlob("gpu_{}".format(g) + '/prob')
            else:
                predicts = workspace.FetchBlob("gpu_{}".format(g) + '/softmax')
            assert predicts.shape[0] == args.batch_size * crop_per_video

            for j in range(args.batch_size):
                # get label for one video
                if args.multi_label:
                    sample_label = label[j * crop_per_video, :]
                else:
                    sample_label = label[j * crop_per_video]
                    # get clip accuracy
                    for k in range(crop_per_video):
                        sorted_preds = \
                            np.argsort(predicts[j * crop_per_video + k, :])
                        sorted_preds[:] = sorted_preds[::-1]
                        if sorted_preds[0] == label[j * crop_per_video + k]:
                            clip_acc = clip_acc + 1
                # get all clip predictions for one video
                all_clips = \
                    predicts[
                        j * crop_per_video:(j + 1) * crop_per_video, :
                    ]
                # aggregate predictions into one
                video_pred = PredictionAggregation(all_clips, args.aggregation)

                if args.multi_label:
                    video_pred = np.expand_dims(video_pred, axis=0)
                    sample_label = np.expand_dims(sample_label, axis=0)
                    all_prob_for_map = np.concatenate(
                        (all_prob_for_map, video_pred), axis=0)
                    all_label_for_map = np.concatenate(
                        (all_label_for_map, sample_label), axis=0)
                else:
                    sorted_video_pred = np.argsort(video_pred)
                    sorted_video_pred[:] = sorted_video_pred[::-1]
                    if sorted_video_pred[0] == sample_label:
                        video_top1 = video_top1 + 1
                    if sample_label in sorted_video_pred[0:args.top_k]:
                        video_topk = video_topk + 1

            video_count = video_count + args.batch_size
            clip_count = clip_count + label.shape[0]

        if i > 0 and i % args.display_iter == 0:
            if args.multi_label:
                # mAP
                auc, ap, wap, aps = metric.mean_ap_metric(
                    all_prob_for_map, all_label_for_map)
                log.info(
                    'Iter {}/{}: mAUC: {}, mAP: {}, mWAP: {}, mAP_all: {}'.
                    format(i, num_iter, auc, ap, wap, np.mean(aps)))
            else:
                # accuracy
                log.info('Iter {}/{}: clip: {}, top1: {}, top 5: {}'.format(
                    i, num_iter, clip_acc / clip_count,
                    video_top1 / video_count, video_topk / video_count))

    if args.multi_label:
        # mAP
        auc, ap, wap, aps = metric.mean_ap_metric(all_prob_for_map,
                                                  all_label_for_map)
        log.info("Test mAUC: {}, mAP: {}, mWAP: {}, mAP_all: {}".format(
            auc, ap, wap, np.mean(aps)))
        if args.print_per_class_metrics:
            log.info("Test mAP per class: {}".format(aps))
    else:
        # accuracy
        log.info("Test accuracy: clip: {}, top 1: {}, top{}: {}".format(
            clip_acc / clip_count, video_top1 / video_count, args.top_k,
            video_topk / video_count))

    if num_gpus > 0:
        flops, params, inters = model_helper.GetFlopsAndParams(
            test_model, gpus[0])
    else:
        flops, params, inters = model_helper.GetFlopsAndParams(test_model)
    log.info('FLOPs: {}, params: {}, inters: {}'.format(flops, params, inters))
def Train(args):
    # Either use specified device list or generate one
    if args.gpus is not None:
        gpus = [int(x) for x in args.gpus.split(',')]
        num_gpus = len(gpus)
    else:
        gpus = list(range(args.num_gpus))
        num_gpus = args.num_gpus

    log.info("Running on GPUs: {}".format(gpus))

    # Verify valid batch size
    total_batch_size = args.batch_size
    batch_per_device = total_batch_size // num_gpus
    assert \
        total_batch_size % num_gpus == 0, \
        "Number of GPUs must divide batch size"

    # Round down epoch size to closest multiple of batch size across machines
    global_batch_size = total_batch_size * args.num_shards
    epoch_iters = int(args.epoch_size / global_batch_size)
    args.epoch_size = epoch_iters * global_batch_size
    log.info("Using epoch size: {}".format(args.epoch_size))

    # Create ModelHelper object
    train_arg_scope = {
        'order': 'NCHW',
        'use_cudnn': True,
        'cudnn_exhaustice_search': True,
        'ws_nbytes_limit': (args.cudnn_workspace_limit_mb * 1024 * 1024),
    }
    train_model = model_helper.ModelHelper(name="mobilenet",
                                           arg_scope=train_arg_scope)

    num_shards = args.num_shards
    shard_id = args.shard_id
    if num_shards > 1:
        # Create rendezvous for distributed computation
        store_handler = "store_handler"
        if args.redis_host is not None:
            # Use Redis for rendezvous if Redis host is specified
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "RedisStoreHandlerCreate",
                    [],
                    [store_handler],
                    host=args.redis_host,
                    port=args.redis_port,
                    prefix=args.run_id,
                ))
        else:
            # Use filesystem for rendezvous otherwise
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "FileStoreHandlerCreate",
                    [],
                    [store_handler],
                    path=args.file_store_path,
                ))
        rendezvous = dict(kv_handler=store_handler,
                          shard_id=shard_id,
                          num_shards=num_shards,
                          engine="GLOO",
                          exit_nets=None)
    else:
        rendezvous = None

    # Model building functions
    def create_mobilenet_model_ops(model, loss_scale):
        [softmax, loss
         ] = mobilenet.create_mobilenet(model,
                                        "data",
                                        num_input_channels=args.num_channels,
                                        num_labels=args.num_labels,
                                        label="label")
        loss = model.Scale(loss, scale=loss_scale)
        brew.accuracy(model, [softmax, "label"], "accuracy")
        return [loss]

    def add_optimizer(model):
        stepsz = int(30 * args.epoch_size / total_batch_size / num_shards)
        optimizer.add_weight_decay(model, args.weight_decay)
        optimizer.build_sgd(model,
                            args.base_learning_rate,
                            momentum=0.9,
                            nesterov=1,
                            policy="step",
                            stepsize=stepsz,
                            gamma=0.1)

    # Input. Note that the reader must be shared with all GPUS.
    reader = train_model.CreateDB(
        "reader",
        db=args.train_data,
        db_type=args.db_type,
        num_shards=num_shards,
        shard_id=shard_id,
    )

    def add_image_input(model):
        AddImageInput(model,
                      reader,
                      batch_size=batch_per_device,
                      img_size=args.image_size,
                      is_test=False)

    # Create parallelized model
    data_parallel_model.Parallelize_GPU(
        train_model,
        input_builder_fun=add_image_input,
        forward_pass_builder_fun=create_mobilenet_model_ops,
        optimizer_builder_fun=add_optimizer,
        devices=gpus,
        rendezvous=rendezvous,
        optimize_gradient_memory=True,
    )
    workspace.RunNetOnce(train_model.param_init_net)
    workspace.CreateNet(train_model.net)

    #
    # # save network graph
    # graph = net_drawer.GetPydotGraphMinimal(
    #     train_model.net.Proto().op, "mobilenet", rankdir="LR", minimal_dependency=True)
    # with open("mobilenet.png", 'wb') as fid:
    #     fid.write(graph.create_png())

    # Add test model, if specified
    test_model = None
    if (args.test_data is not None):
        log.info("----- Create test net ----")
        test_arg_scope = {
            'order': "NCHW",
            'use_cudnn': True,
            'cudnn_exhaustive_search': True,
        }
        test_model = model_helper.ModelHelper(name="mobilenet_test",
                                              arg_scope=test_arg_scope)

        test_reader = test_model.CreateDB(
            "test_reader",
            db=args.test_data,
            db_type=args.db_type,
        )

        def test_input_fn(model):
            AddImageInput(model,
                          test_reader,
                          batch_size=batch_per_device,
                          img_size=args.image_size,
                          is_test=True)

        data_parallel_model.Parallelize_GPU(
            test_model,
            input_builder_fun=test_input_fn,
            forward_pass_builder_fun=create_mobilenet_model_ops,
            param_update_builder_fun=None,
            devices=gpus,
        )
        workspace.RunNetOnce(test_model.param_init_net)
        workspace.CreateNet(test_model.net)

    epoch = 0
    # load the pre-trained model and mobilenet epoch
    if args.load_model_path is not None:
        LoadModel(args.load_model_path, train_model)

        # Sync the model params
        data_parallel_model.FinalizeAfterCheckpoint(train_model)

        # mobilenet epoch. load_model_path should end with *_X.mdl,
        # where X is the epoch number
        last_str = args.load_model_path.split('_')[-1]
        if last_str.endswith('.mdl'):
            epoch = int(last_str[:-4])
            log.info("mobilenet epoch to {}".format(epoch))
        else:
            log.warning("The format of load_model_path doesn't match!")

    expname = "mobilenet_gpu%d_b%d_L%d_lr%.2f_v2" % (
        args.num_gpus,
        total_batch_size,
        args.num_labels,
        args.base_learning_rate,
    )
    explog = experiment_util.ModelTrainerLog(expname, args)

    # Run the training one epoch a time
    while epoch < args.num_epochs:
        epoch = RunEpoch(args, epoch, train_model, test_model,
                         total_batch_size, num_shards, expname, explog)

        # Save the model for each epoch
        SaveModel(args, train_model, epoch)

        model_path = "%s/%s_" % (args.file_store_path, args.save_model_name)
        # remove the saved model from the previous epoch if it exists
        if os.path.isfile(model_path + str(epoch - 1) + ".mdl"):
            os.remove(model_path + str(epoch - 1) + ".mdl")
Exemple #15
0
def feature_extractor(load_model_path=None,
                      test_data=None,
                      gpu_list=None,
                      num_gpus=0,
                      batch_size=4,
                      clip_per_video=1,
                      decode_type=2,
                      clip_length_rgb=4,
                      sampling_rate_rgb=1,
                      scale_h=128,
                      scale_w=171,
                      crop_size=112,
                      video_res_type=0,
                      num_decode_threads=4,
                      multi_label=0,
                      num_labels=101,
                      input_type=0,
                      clip_length_of=8,
                      sampling_rate_of=2,
                      frame_gap_of=2,
                      do_flow_aggregation=0,
                      flow_data_type=0,
                      get_video_id=1,
                      get_start_frame=0,
                      use_local_file=1,
                      crop_per_clip=1,
                      db_type='pickle',
                      model_name='r2plus1d',
                      model_depth=18,
                      num_channels=3,
                      output_path=None,
                      use_cudnn=1,
                      layers='final_avg',
                      num_iterations=1,
                      channel_multiplier=1.0,
                      bottleneck_multiplier=1.0,
                      use_pool1=0,
                      use_convolutional_pred=0,
                      use_dropout=0,
                      **kwargs):
    """
    :param gpu_list: list of gpu ids to use
    :param batch_size: batch size
    :param clip_per_video: When clips_per_video > 1, sample this many clips uniformly in time
    :param decode_type: 0: random, 1: uniform sampling, 2: use starting frame
    :param clip_length_rgb: Length of input clips
    :param sampling_rate_rgb: Frame sampling rate
    :param scale_h: Scale image height to
    :param scale_w: Scale image width to
    :param crop_size: Input image size (to crop to)
    :param video_res_type: Video frame scaling option, 0: scaled by height x width; 1: scaled by short edge
    :param num_decode_threads: number of decoding threads
    :param multi_label: Multiple label csv file input
    :param num_labels: Number of labels
    :param input_type: 0=rgb, 1=optical flow
    :param clip_length_of: Frames of optical flow data
    :param sampling_rate_of: Sampling rate for optial flows
    :param frame_gap_of: Frame gap of optical flows
    :param do_flow_aggregation: whether to aggregate optical flow across multiple frames
    :param flow_data_type: 0=Flow2C, 1=Flow3C, 2=FlowWithGray, 3=FlowWithRGB
    :param get_video_id: Output video id
    :param get_start_frame: Output clip start frame
    :param use_local_file: use local file
    :param crop_per_clip: number of spatial crops per clip
    :param db_type: Db type of the testing model
    :param model_name: Model name
    :param model_depth: Model depth
    :param num_channels: Number of channels
    :param load_model_path: Load saved model for testing
    :param test_data: Path to output pickle; defaults to layers.pickle next to <test_data>
    :param output_path: Path to output pickle; defaults to layers.pickle next to <test_data>
    :param use_cudnn: Use CuDNN
    :param layers: Comma-separated list of blob names to fetch
    :param num_iterations: Run only this many iterations
    :param channel_multiplier: Channel multiplier
    :param bottleneck_multiplier: Bottleneck multiplier
    :param use_pool1: use pool1 layer
    :param use_convolutional_pred: using convolutional predictions
    :param use_dropout: Use dropout at the prediction layer
    """
    if load_model_path is None or test_data is None:
        raise Exception('Model path AND test data need to be specified')

    # Initialize Caffe2
    workspace.GlobalInit(['caffe2', '--caffe2_log_level=2'])

    if gpu_list is None:
        if num_gpus == 0:
            raise Exception('Must specify GPUs')
        else:
            gpus = [i for i in range(num_gpus)]
    else:
        gpus = gpu_list
        num_gpus = len(gpus)

    my_arg_scope = {
        'order': 'NCHW',
        'use_cudnn': True,
        'cudnn_exhaustive_search': True
    }

    model = cnn.CNNModelHelper(name="Extract features", **my_arg_scope)

    video_input_args = dict(
        batch_size=batch_size,
        clip_per_video=clip_per_video,
        decode_type=decode_type,
        length_rgb=clip_length_rgb,
        sampling_rate_rgb=sampling_rate_rgb,
        scale_h=scale_h,
        scale_w=scale_w,
        crop_size=crop_size,
        video_res_type=video_res_type,
        short_edge=min(scale_h, scale_w),
        num_decode_threads=num_decode_threads,
        do_multi_label=multi_label,
        num_of_class=num_labels,
        random_mirror=False,
        random_crop=False,
        input_type=input_type,
        length_of=clip_length_of,
        sampling_rate_of=sampling_rate_of,
        frame_gap_of=frame_gap_of,
        do_flow_aggregation=do_flow_aggregation,
        flow_data_type=flow_data_type,
        get_rgb=input_type == 0,
        get_optical_flow=input_type == 1,
        get_video_id=get_video_id,
        get_start_frame=get_start_frame,
        use_local_file=use_local_file,
        crop_per_clip=crop_per_clip,
    )

    reader_args = dict(
        name="extract_features" + '_reader',
        input_data=test_data,
    )

    reader, num_examples = reader_utils.create_data_reader(
        model, **reader_args)

    def input_fn(model):
        model_helper.AddVideoInput(model, reader, **video_input_args)

    def create_model_ops(model, loss_scale):
        return model_builder.build_model(
            model=model,
            model_name=model_name,
            model_depth=model_depth,
            num_labels=num_labels,
            batch_size=batch_size,
            num_channels=num_channels,
            crop_size=crop_size,
            clip_length=(clip_length_of
                         if input_type == 1 else clip_length_rgb),
            loss_scale=loss_scale,
            is_test=1,
            multi_label=multi_label,
            channel_multiplier=channel_multiplier,
            bottleneck_multiplier=bottleneck_multiplier,
            use_dropout=use_dropout,
            use_convolutional_pred=use_convolutional_pred,
            use_pool1=use_pool1,
        )

    ##
    if num_gpus > 0:
        data_parallel_model.Parallelize_GPU(
            model,
            input_builder_fun=input_fn,
            forward_pass_builder_fun=create_model_ops,
            param_update_builder_fun=None,  # 'None' since we aren't training
            devices=gpus,
            optimize_gradient_memory=True,
        )
    else:
        model._device_type = caffe2_pb2.CPU
        model._devices = [0]
        device_opt = core.DeviceOption(model._device_type, 0)
        with core.DeviceScope(device_opt):
            # Because our loaded models are named with "gpu_x", keep the naming for now.
            # TODO: Save model using `data_parallel_model.ExtractPredictorNet`
            # to extract the model for "gpu_0". It also renames
            # the input and output blobs by stripping the "gpu_x/" prefix
            with core.NameScope("{}_{}".format("gpu", 0)):
                input_fn(model)
                create_model_ops(model, 1.0)

    workspace.RunNetOnce(model.param_init_net)
    workspace.CreateNet(model.net)

    if db_type == 'pickle':
        model_loader.LoadModelFromPickleFile(model, load_model_path)
    elif db_type == 'minidb':
        if num_gpus > 0:
            model_helper.LoadModel(load_model_path, db_type)
        else:
            with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU, 0)):
                model_helper.LoadModel(load_model_path, db_type)
    else:
        log.warning("Unsupported db_type: {}".format(db_type))

    data_parallel_model.FinalizeAfterCheckpoint(model)

    ##
    def fetchActivations(model, outputs, num_iterations):

        all_activations = {}
        for counter in range(num_iterations):
            workspace.RunNet(model.net.Proto().name)

            num_devices = 1  # default for cpu
            if num_gpus > 0:
                num_devices = num_gpus
            for g in range(num_devices):
                for output_name in outputs:
                    blob_name = 'gpu_{}/'.format(g) + output_name
                    activations = workspace.FetchBlob(blob_name)
                    if output_name not in all_activations:
                        all_activations[output_name] = []
                    all_activations[output_name].append(activations)

        # each key holds a list of activations obtained from each minibatch.
        # we now concatenate these lists to get the final arrays.
        # concatenating during the loop requires a realloc and can get slow.
        for key in all_activations:
            all_activations[key] = np.concatenate(all_activations[key])

        return all_activations

    if not isinstance(layers, list):
        layers = [layers]

    if 'video_id' not in layers:
        layers.append('video_id')

    assert len(layers) > 0

    examples_per_iteration = batch_size * num_gpus
    num_iterations = int(num_examples / examples_per_iteration)

    activations = fetchActivations(model, layers, num_iterations)

    # saving extracted layers
    for index in range(len(layers)):
        log.info("Read '{}' with shape {}".format(
            layers[index], activations[layers[index]].shape))

    if output_path:
        log.info('Writing to {}'.format(output_path))
        if save_h5:
            with h5py.File(output_path, 'w') as handle:
                for name, activation in activations.items():
                    handle.create_dataset(name, data=activation)
        else:
            with open(output_path, 'wb') as handle:
                pickle.dump(activations, handle)
    else:
        return activations
Exemple #16
0
def Test(args):
    # Either use specified device list or generate one
    if args.gpus is not None:
        gpus = [int(x) for x in args.gpus.split(',')]
        num_gpus = len(gpus)
    else:
        gpus = list(range(args.num_gpus))
        num_gpus = args.num_gpus

    log.info("Running on GPUs: {}".format(gpus))
    #========================================================
    for db_name, db_size in data_base.items():
        workspace.ResetWorkspace()
        print(workspace.Blobs())

        def create_mobilenet_model_ops(model, loss_scale):
            [softmax, loss] = mobilenet.create_mobilenet(
                model,
                "data",
                num_input_channels=args.num_channels,
                num_labels=args.num_labels,
                label="label")
            # loss = model.Scale(loss, scale=loss_scale)
            brew.accuracy(model, [softmax, "label"], "accuracy")
            # return [loss]

        log.info("----- Create test net ----")
        test_arg_scope = {
            'order': "NCHW",
            'use_cudnn': True,
            'cudnn_exhaustive_search': True,
        }
        test_model = model_helper.ModelHelper(
            name="mobilenet_test",
            arg_scope=test_arg_scope  #, init_params=False
        )

        test_data_db = os.path.join(data_folder, db_name)
        print(test_data_db, db_size)

        test_reader = test_model.CreateDB(
            "test_reader",
            db=test_data_db,
            db_type=args.db_type,
        )

        def test_input_fn(model):
            AddImageInput(
                model,
                test_reader,
                batch_size=args.batch_size,
                img_size=args.image_size,
            )

        data_parallel_model.Parallelize_GPU(
            test_model,
            input_builder_fun=test_input_fn,
            forward_pass_builder_fun=create_mobilenet_model_ops,
            param_update_builder_fun=None,
            devices=gpus,
        )
        workspace.RunNetOnce(test_model.param_init_net)
        workspace.CreateNet(test_model.net)
        # load the pre-trained model and mobilenet epoch

        LoadModel(args.load_model_path, test_model)
        data_parallel_model.FinalizeAfterCheckpoint(test_model)

        (test_max_softmax, test_max_index,
         test_label) = RunEpoch(args, db_size, test_model, args.batch_size)
        # flag_accuracy = (test_label == test_max_index).astype(np.int)
        # print(flag_accuracy.mean())

        save_path = os.path.join(root_folder, db_name[:-5] + ".npz")
        print(save_path)
        np.savez(save_path,
                 max_softmax=test_max_softmax,
                 max_index=test_max_index,
                 label=test_label)
        if os.path.exists(save_path):
            print("OK")