Exemple #1
0
    def _test_net(self, net_name, input_blob_dims=(1, 3, 224, 224), decimal=7):
        np.random.seed(seed=0)
        model_dir = self._model_dir(net_name)
        if not os.path.exists(model_dir):
            self._download(net_name)
        c2_predict_pb = os.path.join(model_dir, 'predict_net.pb')
        c2_predict_net = caffe2_pb2.NetDef()
        with open(c2_predict_pb, 'rb') as f:
            c2_predict_net.ParseFromString(f.read())
        c2_predict_net.name = net_name

        c2_init_pb = os.path.join(model_dir, 'init_net.pb')
        c2_init_net = caffe2_pb2.NetDef()
        with open(c2_init_pb, 'rb') as f:
            c2_init_net.ParseFromString(f.read())
        c2_init_net.name = net_name + '_init'

        n, c, h, w = input_blob_dims
        data = np.random.randn(n, c, h, w).astype(np.float32)
        inputs = [data]
        _, c2_outputs = c2_native_run_net(c2_init_net, c2_predict_net, inputs)
        del _

        model = c2_onnx.caffe2_net_to_onnx_model(
            predict_net=c2_predict_net,
            init_net=c2_init_net,
            value_info=json.load(
                open(os.path.join(model_dir, 'value_info.json'))))
        c2_ir = c2.prepare(model)
        onnx_outputs = c2_ir.run(inputs)
        self.assertSameOutputs(c2_outputs, onnx_outputs, decimal=decimal)
Exemple #2
0
    def test_cast(self):
        X = np.random.randn(1, 2, 3).astype(np.float32)

        for to_type in ['INT8', caffe2_pb2.TensorProto.INT8,
                        'DOUBLE', caffe2_pb2.TensorProto.DOUBLE]:
            predict_net = caffe2_pb2.NetDef()
            predict_net.name = 'test-cast-net'
            predict_net.external_input[:] = ['X']
            predict_net.external_output[:] = ['Y']
            predict_net.op.extend([
                core.CreateOperator(
                    'Cast',
                    inputs=['X'],
                    outputs=['Y'],
                    to=to_type,
                ),
            ])
            ws, c2_outputs = c2_native_run_net(
                init_net=None,
                predict_net=predict_net,
                inputs=[X])

            onnx_model = c2_onnx.caffe2_net_to_onnx_model(
                predict_net=predict_net,
                value_info={
                    'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape)
                })
            onnx_outputs = c2.run_model(onnx_model, inputs=[X])
            self.assertSameOutputs(c2_outputs, onnx_outputs)
Exemple #3
0
    def test_slice(self):
        X = np.random.randn(1, 2, 3).astype(np.float32)
        starts = np.array([0, 1, 0], dtype=np.int32)
        ends = np.array([-1, 2, 3], dtype=np.int32)

        predict_net = caffe2_pb2.NetDef()
        predict_net.name = 'test-slice-net'
        predict_net.external_input[:] = ['X']
        predict_net.external_output[:] = ['Y']
        predict_net.op.extend([
            core.CreateOperator(
                'Slice',
                inputs=['X'],
                outputs=['Y'],
                starts=starts,
                ends=ends,
            ),
        ])
        ws, c2_outputs = c2_native_run_net(init_net=None,
                                           predict_net=predict_net,
                                           inputs=[X])

        onnx_model = c2_onnx.caffe2_net_to_onnx_model(
            predict_net=predict_net,
            value_info={
                'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape)
            })
        onnx_outputs = c2.run_model(onnx_model, inputs=[X])
        self.assertSameOutputs(c2_outputs, onnx_outputs)
    def test_mergedim(self):
        X = np.random.randn(2, 3, 1, 5).astype(np.float32)

        predict_net = caffe2_pb2.NetDef()
        predict_net.name = 'test-mergedim-net'
        predict_net.external_input[:] = ['X']
        predict_net.external_output[:] = ['Y']
        predict_net.op.extend([
            core.CreateOperator(
                'MergeDim',
                inputs=['X'],
                outputs=['Y'],
            ),
        ])
        ws, c2_outputs = c2_native_run_net(init_net=None,
                                           predict_net=predict_net,
                                           inputs=[X])

        onnx_model = c2_onnx.caffe2_net_to_onnx_model(
            predict_net=predict_net,
            value_info={
                'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape),
            })
        onnx_outputs = c2.run_model(onnx_model, inputs=[X])
        self.assertSameOutputs(c2_outputs, onnx_outputs)
Exemple #5
0
 def test_concat(self):
     I0 = np.random.randn(20, 4).astype(np.float32)
     I1 = np.random.randn(20, 4).astype(np.float32)
     for i in range(2):
         predict_net = caffe2_pb2.NetDef()
         predict_net.name = 'test-concat-net'
         predict_net.external_input[:] = ['I0', 'I1']
         predict_net.external_output[:] = ['Y', 'output_dim']
         predict_net.op.extend([
             core.CreateOperator(
                 'Concat',
                 inputs=['I0', 'I1'],
                 outputs=['Y', 'output_dim'],
                 axis=1,
                 add_axis=(1 if i == 0 else 0),
             ),
         ])
         ws, c2_outputs = c2_native_run_net(init_net=None,
                                            predict_net=predict_net,
                                            inputs=[I0, I1])
         onnx_model = c2_onnx.caffe2_net_to_onnx_model(
             predict_net=predict_net,
             value_info={
                 'I0':
                 (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[I0.dtype], I0.shape),
                 'I1':
                 (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[I1.dtype], I1.shape),
             })
         onnx_outputs = c2.run_model(onnx_model, inputs=[I0, I1])
         self.assertSameOutputs(c2_outputs, onnx_outputs)
Exemple #6
0
    def test_slice(self):
        X = np.random.randn(1, 2, 3).astype(np.float32)
        starts = np.array([0, 1, 0], dtype=np.int32)
        ends = np.array([-1, 2, 3], dtype=np.int32)

        predict_net = caffe2_pb2.NetDef()
        predict_net.name = 'test-slice-net'
        predict_net.external_input[:] = ['X']
        predict_net.external_output[:] = ['Y']
        predict_net.op.extend([
            core.CreateOperator(
                'Slice',
                inputs=['X'],
                outputs=['Y'],
                starts=starts,
                ends=ends,
            ),
        ])
        ws, (Y,) = c2_native_run_net(
            init_net=None,
            predict_net=predict_net,
            inputs=[X])

        onnx_model = c2_onnx.caffe2_net_to_onnx_model(
            predict_net=predict_net,
            value_info={
                'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape)
            })
        Y, = c2.run_model(onnx_model, inputs=[X])
        np.testing.assert_almost_equal(Y, X[:, 1:2, :])
    def _test_net(self, net_name, input_blob_dims=(1, 3, 224, 224), decimal=7):
        np.random.seed(seed=0)
        try:
            c2_init_net, c2_predict_net, value_info, debug_str = self.model_downloader.get_c2_model_dbg(
                net_name)
        except Exception as e:
            # catch IOError/OSError that is caused by FileNotFoundError and PermissionError
            # This is helpful because sometimes we get errors due to gfs not available
            # get_c2_model_dbg wraps URLError/HTTPErrors into generic Exception
            # Skip the tests if model can not be downloaded due to the any of the above
            print("\n_test_net exception: ", e)
            self.skipTest(str(e))

        # start to run the model and compare outputs
        n, c, h, w = input_blob_dims
        data = np.random.randn(n, c, h, w).astype(np.float32)
        inputs = [data]
        _, c2_outputs = c2_native_run_net(c2_init_net, c2_predict_net, inputs,
                                          debug_str)
        del _

        model = c2_onnx.caffe2_net_to_onnx_model(
            predict_net=c2_predict_net,
            init_net=c2_init_net,
            value_info=value_info,
        )
        c2_ir = c2.prepare(model)
        onnx_outputs = c2_ir.run(inputs)
        self.assertSameOutputs(c2_outputs, onnx_outputs, decimal=decimal)
    def test_elementwiselinear(self):
        X = np.random.randn(4, 2, 5, 7, 3).astype(np.float32)
        W = np.random.randn(21).astype(np.float32)
        B = np.random.randn(21).astype(np.float32)

        predict_net = caffe2_pb2.NetDef()
        predict_net.name = 'test-elementwiselinear-net'
        predict_net.external_input[:] = ['X', 'W', 'B']
        predict_net.external_output[:] = ['Y']
        predict_net.op.extend([
            core.CreateOperator(
                'ElementwiseLinear',
                inputs=['X', 'W', 'B'],
                outputs=['Y'],
                axis=3,
            ),
        ])
        ws, c2_outputs = c2_native_run_net(init_net=None,
                                           predict_net=predict_net,
                                           inputs=[X, W, B])

        onnx_model = c2_onnx.caffe2_net_to_onnx_model(
            predict_net=predict_net,
            value_info={
                'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape),
                'W': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[W.dtype], W.shape),
                'B': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[B.dtype], B.shape),
            })
        onnx_outputs = c2.run_model(onnx_model, inputs=[X, W, B])
        self.assertSameOutputs(c2_outputs, onnx_outputs)
    def test_fc(self):
        X_fake = np.zeros((3, 1, 3, 1, 7), dtype=np.float32)
        X = np.random.randn(5, 2, 3, 1, 7).astype(np.float32)
        W = np.random.randn(11, 21).astype(np.float32)
        B = np.random.randn(11).astype(np.float32)

        predict_net = caffe2_pb2.NetDef()
        predict_net.name = 'test-fc-net'
        predict_net.external_input[:] = ['X', 'W', 'B']
        predict_net.external_output[:] = ['Y']
        predict_net.op.extend([
            core.CreateOperator(
                'FC',
                inputs=['X', 'W', 'B'],
                outputs=['Y'],
                axis=2,
            ),
        ])
        ws, c2_outputs = c2_native_run_net(init_net=None,
                                           predict_net=predict_net,
                                           inputs=[X, W, B])

        onnx_model = c2_onnx.caffe2_net_to_onnx_model(
            predict_net=predict_net,
            value_info={
                'X':
                (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X_fake.shape),
                'W': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[W.dtype], W.shape),
                'B': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[B.dtype], B.shape),
            })
        onnx_outputs = c2.run_model(onnx_model, inputs=[X, W, B])
        self.assertSameOutputs(c2_outputs, onnx_outputs)
Exemple #10
0
    def _test_net(self,
                  net_name,
                  input_blob_dims=(1, 3, 224, 224),
                  decimal=7):
        np.random.seed(seed=0)
        model_dir = self._model_dir(net_name)
        if not os.path.exists(model_dir):
            self._download(net_name)
        c2_predict_pb = os.path.join(model_dir, 'predict_net.pb')
        c2_predict_net = caffe2_pb2.NetDef()
        with open(c2_predict_pb, 'rb') as f:
            c2_predict_net.ParseFromString(f.read())
        c2_predict_net.name = net_name

        c2_init_pb = os.path.join(model_dir, 'init_net.pb')
        c2_init_net = caffe2_pb2.NetDef()
        with open(c2_init_pb, 'rb') as f:
            c2_init_net.ParseFromString(f.read())
        c2_init_net.name = net_name + '_init'

        n, c, h, w = input_blob_dims
        data = np.random.randn(n, c, h, w).astype(np.float32)
        inputs = [data]
        _, c2_outputs = c2_native_run_net(c2_init_net, c2_predict_net, inputs)
        del _

        model = c2_onnx.caffe2_net_to_onnx_model(
            predict_net=c2_predict_net,
            init_net=c2_init_net,
            value_info=json.load(open(os.path.join(model_dir, 'value_info.json'))))
        c2_ir = c2.prepare(model)
        onnx_outputs = c2_ir.run(inputs)
        self.assertSameOutputs(c2_outputs, onnx_outputs, decimal=decimal)
Exemple #11
0
    def test_cast(self):
        X = np.random.randn(1, 2, 3).astype(np.float32)

        for to_type in [
                'INT8', caffe2_pb2.TensorProto.INT8, 'DOUBLE',
                caffe2_pb2.TensorProto.DOUBLE
        ]:
            predict_net = caffe2_pb2.NetDef()
            predict_net.name = 'test-cast-net'
            predict_net.external_input[:] = ['X']
            predict_net.external_output[:] = ['Y']
            predict_net.op.extend([
                core.CreateOperator(
                    'Cast',
                    inputs=['X'],
                    outputs=['Y'],
                    to=to_type,
                ),
            ])
            ws, c2_outputs = c2_native_run_net(init_net=None,
                                               predict_net=predict_net,
                                               inputs=[X])

            onnx_model = c2_onnx.caffe2_net_to_onnx_model(
                predict_net=predict_net,
                value_info={
                    'X':
                    (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape)
                })
            onnx_outputs = c2.run_model(onnx_model, inputs=[X])
            self.assertSameOutputs(c2_outputs, onnx_outputs)
Exemple #12
0
    def test_upsample(self):
        X = np.random.randn(1, 1, 2, 2).astype(np.float32)
        width_scale = 2.0
        height_scale = 2.0

        predict_net = caffe2_pb2.NetDef()
        predict_net.name = 'test-upsample-net'
        predict_net.external_input[:] = ['X']
        predict_net.external_output[:] = ['Y']
        predict_net.op.extend([
            core.CreateOperator(
                'ResizeNearest',
                inputs=['X'],
                outputs=['Y'],
                width_scale=width_scale,
                height_scale=height_scale,
            ),
        ])
        ws, c2_outputs = c2_native_run_net(init_net=None,
                                           predict_net=predict_net,
                                           inputs=[X])

        onnx_model = c2_onnx.caffe2_net_to_onnx_model(
            predict_net=predict_net,
            value_info={
                'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape)
            })
        onnx_outputs = c2.run_model(onnx_model, inputs=[X])
        self.assertSameOutputs(c2_outputs, onnx_outputs)
Exemple #13
0
 def caffe2_init_net_to_initializer(cls, init_net):
     ws, _ = c2_native_run_net(init_net=None, predict_net=init_net, inputs=[])
     output_names = []
     for op in init_net.op:
         output_names.extend(op.output)
     initializer = [numpy_helper.from_array(ws.FetchBlob(name), name=name)
                    for name in sorted(set(output_names))]
     return initializer
Exemple #14
0
 def caffe2_init_net_to_initializer(cls, init_net):
     ws, _ = c2_native_run_net(init_net=None, predict_net=init_net, inputs=[])
     output_names = []
     for op in init_net.op:
         output_names.extend(op.output)
     initializer = [numpy_helper.from_array(ws.FetchBlob(name), name=name)
                    for name in sorted(set(output_names))]
     return initializer
Exemple #15
0
    def test_reducemean(self):
        X = np.random.randn(4, 6, 10, 5, 3).astype(np.float32)

        predict_net = caffe2_pb2.NetDef()
        predict_net.name = 'test-reducemean-net'
        predict_net.external_input[:] = ['X']
        predict_net.external_output[:] = [
                'reduce_front_mean',
                'reduce_back_mean',
                'reduce_mean_0',
                'reduce_mean_1',
            ]
        predict_net.op.extend([
            core.CreateOperator(
                'ReduceFrontMean',
                inputs=['X'],
                outputs=['reduce_front_mean'],
                num_reduce_dim=2,
            ),
            core.CreateOperator(
                'ReduceBackMean',
                inputs=['X'],
                outputs=['reduce_back_mean'],
                num_reduce_dim=2,
            ),
            core.CreateOperator(
                'ReduceMean',
                inputs=['X'],
                outputs=['reduce_mean_0'],
                axes=[1, 3],
                keepdims=0,
            ),
            core.CreateOperator(
                'ReduceMean',
                inputs=['X'],
                outputs=['reduce_mean_1'],
                axes=[1, 3],
                keepdims=1,
            ),
        ])
        ws, c2_outputs = c2_native_run_net(
            init_net=None,
            predict_net=predict_net,
            inputs=[X])

        onnx_model = c2_onnx.caffe2_net_to_onnx_model(
            predict_net=predict_net,
            value_info={
                'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape)
            })
        onnx_outputs = c2.run_model(onnx_model, inputs=[X])
        self.assertSameOutputs(c2_outputs, onnx_outputs)
Exemple #16
0
def _infer_shapes(init_net, pred_net, inputs):
    ws, outputs = c2_native_run_net(init_net, pred_net, inputs)
    hints = {}
    for op in pred_net.op:
        for o in op.output:
            if o not in hints:
                blob = ws.FetchBlob(o)
                if hasattr(blob, 'shape'):
                    hints[o] = blob.shape
        for i in op.input:
            if i not in hints:
                blob = ws.FetchBlob(i)
                if hasattr(blob, 'shape'):
                    hints[i] = blob.shape

    return hints
def _infer_shapes(init_net, pred_net, inputs):
    ws, outputs = c2_native_run_net(init_net, pred_net, inputs)
    hints = {}
    for op in pred_net.op:
        for o in op.output:
            if o not in hints:
                blob = ws.FetchBlob(o)
                if hasattr(blob, 'shape'):
                    hints[o] = blob.shape
        for i in op.input:
            if i not in hints:
                blob = ws.FetchBlob(i)
                if hasattr(blob, 'shape'):
                    hints[i] = blob.shape

    return hints
    def _test_net(self, net_name, input_blob_dims=(1, 3, 224, 224), decimal=7):
        np.random.seed(seed=0)
        try:
            c2_init_net, c2_predict_net, value_info = self.model_downloader.get_c2_model(
                net_name)
        except (OSError, IOError) as e:
            # catch IOError/OSError that is caused by FileNotFoundError and PermissionError
            self.skipTest(str(e))

        # start to run the model and compare outputs
        n, c, h, w = input_blob_dims
        data = np.random.randn(n, c, h, w).astype(np.float32)
        inputs = [data]
        _, c2_outputs = c2_native_run_net(c2_init_net, c2_predict_net, inputs)
        del _

        model = c2_onnx.caffe2_net_to_onnx_model(
            predict_net=c2_predict_net,
            init_net=c2_init_net,
            value_info=value_info,
        )
        c2_ir = c2.prepare(model)
        onnx_outputs = c2_ir.run(inputs)
        self.assertSameOutputs(c2_outputs, onnx_outputs, decimal=decimal)
Exemple #19
0
    def caffe2_net_to_onnx_graph(cls,
                                 predict_net,
                                 init_net=None,
                                 value_info=None):
        if value_info is None:
            value_info = {}
        if not isinstance(value_info, dict):
            raise ValueError('Please pass value_info as a '
                             'name -> (type, shape) dictionary')

        cls._filter_fake_init(init_net, value_info)
        cls._ssa_rewrite(predict_net, init_net, value_info)

        if init_net:
            initializer = cls.caffe2_init_net_to_initializer(init_net)
            value_info.update({
                init.name: (init.data_type, init.dims)
                for init in initializer
            })
        else:
            initializer = []

        # Check whether we have got type shape info of all input
        missing = (set(list(predict_net.external_input)) -
                   set(value_info.keys()))
        if missing:
            raise RuntimeError(
                'Could not find value info of inputs: {}'.format(
                    ', '.join(missing)))

        inputs = {}
        for name in predict_net.external_input:
            elem_type, shape = value_info[name]
            inputs[name] = np.random.randn(*shape).astype(
                mapping.TENSOR_TYPE_TO_NP_TYPE[elem_type])

        ws, outputs = c2_native_run_net(init_net, predict_net, inputs)

        for name in predict_net.external_output:
            output = outputs[name]
            elem_type = mapping.NP_TYPE_TO_TENSOR_TYPE[output.dtype]
            shape = output.shape
            value_info[name] = (elem_type, shape)

        graph_def = GraphProto()
        graph_def.name = predict_net.name
        graph_def.initializer.extend(initializer)
        # This is a mapping from Caffe2 names to ONNX names
        graph_def.input.extend(
            make_tensor_value_info(name=name,
                                   elem_type=value_info[name][0],
                                   shape=value_info[name][1])
            for name in predict_net.external_input)

        dummy_name(
            cls._all_names_in_net(predict_net)
            | cls._all_names_in_net(init_net))

        for op in predict_net.op:
            shapes = {}
            for name in itertools.chain(op.input, op.output):
                blob = ws.FetchBlob(name)
                if hasattr(blob, 'shape'):
                    shapes[name] = blob.shape
            nodes, const_tensors = cls.caffe2_op_to_onnx_node(op,
                                                              shapes=shapes)
            graph_def.node.extend(nodes)
            graph_def.initializer.extend(const_tensors)
            graph_def.input.extend(
                [cls._extract_value_info(tensor) for tensor in const_tensors])

        all_output = set(
            sum((list(node.output) for node in graph_def.node),
                [init.name for init in graph_def.initializer]))
        redundant_output = set(vi.name for vi in graph_def.output) - all_output
        if redundant_output:
            logger.warning(
                'There are graph output not produced by any node or initializer: {}'
                '! Will drop them.'.format(', '.join(redundant_output)))
        graph_def.output.extend(
            make_tensor_value_info(name=name,
                                   elem_type=value_info[name][0],
                                   shape=value_info[name][1])
            for name in predict_net.external_output if name in all_output)

        checker.check_graph(graph_def)
        return graph_def
Exemple #20
0
    def test_convert_end2end(self):
        predict_net_f = tempfile.NamedTemporaryFile()
        init_net_f = tempfile.NamedTemporaryFile()
        onnx_model_f = tempfile.NamedTemporaryFile()

        x = 'X'
        w = 'W'
        b = 'b'
        y = 'Y'

        predict_net = caffe2_pb2.NetDef()
        predict_net.name = 'test-convert-end2end'
        predict_net.external_input[:] = [x, w, b]
        predict_net.external_output[:] = [y]
        predict_net.op.extend([
            core.CreateOperator(
                'FC',
                inputs=[x, w, b],
                outputs=[y],
                axis=2,
            ),
        ])
        predict_net_f.write(predict_net.SerializeToString())
        predict_net_f.flush()

        init_net = caffe2_pb2.NetDef()
        init_net.name = 'test-convert-end2end-init'
        init_net.external_output[:] = [w, b]
        x_val = np.random.randn(1, 3, 2).astype(np.float32)
        w_val = np.random.randn(4, 2).astype(np.float32)
        b_val = np.random.randn(4).astype(np.float32)
        init_net.op.extend([
            core.CreateOperator(
                'GivenTensorFill',
                [],
                [w],
                values=w_val,
                shape=w_val.shape,
            ),
            core.CreateOperator(
                'GivenTensorFill',
                [],
                [b],
                values=b_val,
                shape=b_val.shape,
            ),
        ])
        init_net_f.write(init_net.SerializeToString())
        init_net_f.flush()

        y_val = np.matmul(x_val, w_val.transpose()) + b_val
        for _ in range(5):
            self._run_command(
                caffe2_to_onnx,
                [
                    predict_net_f.name,
                    '--caffe2-init-net',
                    init_net_f.name,
                    '--output',
                    onnx_model_f.name,
                    '--value-info',
                    json.dumps({
                        x: (TensorProto.FLOAT, (1, 3, 2)),
                    }),
                ],
                catch_exceptions=False,
            )

            onnx_model_f.seek(0)
            onnx_model = ModelProto()
            onnx_model.ParseFromString(onnx_model_f.read())
            np.testing.assert_almost_equal(
                c2.run_model(onnx_model,
                             {onnx_model.graph.input[0].name: x_val}), [y_val])

            self._run_command(onnx_to_caffe2, [
                onnx_model_f.name,
                '--output',
                predict_net_f.name,
                '--init-net-output',
                init_net_f.name,
            ])
            predict_net_f.seek(0)
            predict_net = caffe2_pb2.NetDef()
            predict_net.ParseFromString(predict_net_f.read())
            init_net_f.seek(0)
            init_net = caffe2_pb2.NetDef()
            init_net.ParseFromString(init_net_f.read())
            x = predict_net.external_input[0]
            np.testing.assert_almost_equal(
                c2_native_run_net(init_net=init_net,
                                  predict_net=predict_net,
                                  inputs={x: x_val})[1], [y_val])
Exemple #21
0
    def caffe2_net_to_onnx_graph(cls,
                                 predict_net,
                                 init_net=None,
                                 value_info=None):
        if value_info is None:
            value_info = {}
        if not isinstance(value_info, dict):
            raise ValueError('Please pass value_info as a '
                             'name -> (type, shape) dictionary')

        cls._filter_fake_init(init_net, value_info)
        cls._ssa_rewrite(predict_net, init_net, value_info)

        if init_net:
            initializer = cls.caffe2_init_net_to_initializer(init_net)
            value_info.update({init.name: (init.data_type, init.dims)
                               for init in initializer})
        else:
            initializer = []

        # Check whether we have got type shape info of all input
        missing = (set(list(predict_net.external_input)) -
                   set(value_info.keys()))
        if missing:
            raise RuntimeError('Could not find value info of inputs: {}'.format(
                ', '.join(missing)))

        inputs = {}
        for name in predict_net.external_input:
            elem_type, shape = value_info[name]
            inputs[name] = np.random.randn(*shape).astype(
                mapping.TENSOR_TYPE_TO_NP_TYPE[elem_type])

        ws, outputs = c2_native_run_net(
            init_net,
            predict_net,
            inputs)

        for name in predict_net.external_output:
            output = outputs[name]
            elem_type = mapping.NP_TYPE_TO_TENSOR_TYPE[output.dtype]
            shape = output.shape
            value_info[name] = (elem_type, shape)

        graph_def = GraphProto()
        graph_def.name = predict_net.name
        graph_def.initializer.extend(initializer)
        # This is a mapping from Caffe2 names to ONNX names
        graph_def.input.extend(
            make_tensor_value_info(
                name=name,
                elem_type=value_info[name][0],
                shape=value_info[name][1])
            for name in predict_net.external_input)

        cls._dummy_name.reset(cls._all_names_in_net(predict_net) | cls._all_names_in_net(init_net))

        for op in predict_net.op:
            shapes = {}
            for name in itertools.chain(op.input, op.output):
                blob = ws.FetchBlob(name)
                if hasattr(blob, 'shape'):
                    shapes[name] = blob.shape
            nodes, const_tensors = cls.caffe2_op_to_onnx_node(op, shapes=shapes)
            graph_def.node.extend(nodes)
            graph_def.initializer.extend(const_tensors)
            graph_def.input.extend([cls._extract_value_info(tensor) for tensor in const_tensors])

        all_output = set(sum((list(node.output) for node in graph_def.node),
                             [init.name for init in graph_def.initializer]))
        redundant_output = set(vi.name for vi in graph_def.output) - all_output
        if redundant_output:
            logger.warning(
                'There are graph output not produced by any node or initializer: {}'
                '! Will drop them.'.format(', '.join(redundant_output)))
        graph_def.output.extend(
            make_tensor_value_info(
                name=name,
                elem_type=value_info[name][0],
                shape=value_info[name][1])
            for name in predict_net.external_output
            if name in all_output)

        return graph_def
Exemple #22
0
    def test_ssa(self):
        X = np.random.randn(4, 2).astype(np.float32)
        W = np.random.randn(3, 2).astype(np.float32)
        b = np.random.randn(3).astype(np.float32)
        s = np.random.randn(1).astype(np.float32)
        np_result = X.dot(W.transpose()) + b + s

        net = caffe2_pb2.NetDef()
        net.name = 'test-ssa'
        net.external_input[:] = ['W', 'X', 'b', 's']
        net.op.extend([
            core.CreateOperator(
                'FC',
                ['X', 'W', 'b'],
                ['Y']
            ),
            core.CreateOperator(
                'Add',
                ['Y', 's'],
                ['Y'],
                broadcast=True,
            )
        ])
        net.external_output[:] = ['Y']

        init_net = caffe2_pb2.NetDef()
        init_net.name = 'test-ssa-init'
        init_net.op.extend([
            core.CreateOperator(
                'GivenTensorFill',
                [],
                ['W'],
                values=W,
                shape=W.shape,
            ),
            core.CreateOperator(
                'GivenTensorFill',
                [],
                ['b'],
                values=b,
                shape=b.shape,
            ),
            core.CreateOperator(
                'GivenTensorFill',
                [],
                ['s'],
                values=s,
                shape=s.shape,
            )
        ])
        init_net.external_output[:] = ['W', 'b', 's']

        _, orig_output = c2_native_run_net(
            predict_net=net,
            init_net=init_net,
            inputs=[X])

        value_info = {'X': (TensorProto.FLOAT, X.shape)}
        c2_onnx.Caffe2Frontend._ssa_rewrite(
            net,
            init_net,
            value_info)

        self.assertEqual(net.external_input, ['W_0', 'X_0', 'b_0', 's_0'])
        self.assertEqual(net.op[0].input, ['X_0', 'W_0', 'b_0'])
        self.assertEqual(net.op[0].output, ['Y_1'])
        self.assertEqual(net.op[1].input, ['Y_1', 's_0'])
        self.assertEqual(net.op[1].output, ['Y_2'])
        self.assertEqual(net.external_output, ['Y_2'])

        self.assertEqual(init_net.external_input, [])
        self.assertEqual(init_net.op[0].input, [])
        self.assertEqual(init_net.op[0].output, ['W_0'])
        self.assertEqual(init_net.op[1].input, [])
        self.assertEqual(init_net.op[1].output, ['b_0'])
        self.assertEqual(init_net.op[2].input, [])
        self.assertEqual(init_net.op[2].output, ['s_0'])
        self.assertEqual(init_net.external_output, ['W_0', 'b_0', 's_0'])
        self.assertEqual(value_info, {'X_0': (TensorProto.FLOAT, X.shape)})

        _, ssa_output = c2_native_run_net(
            predict_net=net,
            init_net=init_net,
            inputs=[X])

        self.assertSameOutputs(ssa_output, orig_output)
        self.assertSameOutputs(ssa_output, [np_result])
Exemple #23
0
    def test_ssa(self):
        X = np.random.randn(4, 2).astype(np.float32)
        W = np.random.randn(3, 2).astype(np.float32)
        b = np.random.randn(3).astype(np.float32)
        s = np.random.randn(1).astype(np.float32)
        np_result = X.dot(W.transpose()) + b + s

        net = caffe2_pb2.NetDef()
        net.name = 'test-ssa'
        net.external_input[:] = ['W', 'X', 'b', 's']
        net.op.extend([
            core.CreateOperator('FC', ['X', 'W', 'b'], ['Y']),
            core.CreateOperator(
                'Add',
                ['Y', 's'],
                ['Y'],
                broadcast=True,
            )
        ])
        net.external_output[:] = ['Y']

        init_net = caffe2_pb2.NetDef()
        init_net.name = 'test-ssa-init'
        init_net.op.extend([
            core.CreateOperator(
                'GivenTensorFill',
                [],
                ['W'],
                values=W,
                shape=W.shape,
            ),
            core.CreateOperator(
                'GivenTensorFill',
                [],
                ['b'],
                values=b,
                shape=b.shape,
            ),
            core.CreateOperator(
                'GivenTensorFill',
                [],
                ['s'],
                values=s,
                shape=s.shape,
            )
        ])
        init_net.external_output[:] = ['W', 'b', 's']

        _, orig_output = c2_native_run_net(predict_net=net,
                                           init_net=init_net,
                                           inputs=[X])

        value_info = {'X': (TensorProto.FLOAT, X.shape)}
        c2_onnx.Caffe2Frontend._ssa_rewrite(net, init_net, value_info)

        self.assertEqual(net.external_input, ['W', 'X', 'b', 's'])
        self.assertEqual(net.op[0].input, ['X', 'W', 'b'])
        self.assertEqual(net.op[0].output, ['Y_1'])
        self.assertEqual(net.op[1].input, ['Y_1', 's'])
        self.assertEqual(net.op[1].output, ['Y_2'])
        self.assertEqual(net.external_output, ['Y_2'])

        self.assertEqual(init_net.external_input, [])
        self.assertEqual(init_net.op[0].input, [])
        self.assertEqual(init_net.op[0].output, ['W'])
        self.assertEqual(init_net.op[1].input, [])
        self.assertEqual(init_net.op[1].output, ['b'])
        self.assertEqual(init_net.op[2].input, [])
        self.assertEqual(init_net.op[2].output, ['s'])
        self.assertEqual(init_net.external_output, ['W', 'b', 's'])
        self.assertEqual(value_info, {'X': (TensorProto.FLOAT, X.shape)})

        _, ssa_output = c2_native_run_net(predict_net=net,
                                          init_net=init_net,
                                          inputs=[X])

        self.assertSameOutputs(ssa_output, orig_output)
        self.assertSameOutputs(ssa_output, [np_result])
Exemple #24
0
    def test_convert_end2end(self):
        predict_net_f = tempfile.NamedTemporaryFile()
        init_net_f = tempfile.NamedTemporaryFile()
        onnx_model_f = tempfile.NamedTemporaryFile()

        x = 'X'
        w = 'W'
        b = 'b'
        y = 'Y'

        predict_net = caffe2_pb2.NetDef()
        predict_net.name = 'test-convert-end2end'
        predict_net.external_input[:] = [x, w, b]
        predict_net.external_output[:] = [y]
        predict_net.op.extend([
            core.CreateOperator(
                'FC',
                inputs=[x, w, b],
                outputs=[y],
                axis=2,
            ),
        ])
        predict_net_f.write(predict_net.SerializeToString())
        predict_net_f.flush()

        init_net = caffe2_pb2.NetDef()
        init_net.name = 'test-convert-end2end-init'
        init_net.external_output[:] = [w, b]
        x_val = np.random.randn(1, 3, 2).astype(np.float32)
        w_val = np.random.randn(4, 2).astype(np.float32)
        b_val = np.random.randn(4).astype(np.float32)
        init_net.op.extend([
            core.CreateOperator(
                'GivenTensorFill',
                [],
                [w],
                values=w_val,
                shape=w_val.shape,
            ),
            core.CreateOperator(
                'GivenTensorFill',
                [],
                [b],
                values=b_val,
                shape=b_val.shape,
            ),
        ])
        init_net_f.write(init_net.SerializeToString())
        init_net_f.flush()

        y_val = np.matmul(x_val, w_val.transpose()) + b_val
        for _ in range(5):
            self._run_command(
                caffe2_to_onnx, [
                    predict_net_f.name,
                    '--caffe2-init-net', init_net_f.name,
                    '--output', onnx_model_f.name,
                    '--value-info',
                    json.dumps({
                        x: (TensorProto.FLOAT, (1, 3, 2)),
                    }),
                ],
                catch_exceptions=False,
            )

            onnx_model_f.seek(0)
            onnx_model = ModelProto()
            onnx_model.ParseFromString(onnx_model_f.read())
            np.testing.assert_almost_equal(
                c2.run_model(
                    onnx_model, {onnx_model.graph.input[0].name: x_val}),
                [y_val])

            self._run_command(
                onnx_to_caffe2, [
                    onnx_model_f.name,
                    '--output', predict_net_f.name,
                    '--init-net-output', init_net_f.name,
                ])
            predict_net_f.seek(0)
            predict_net = caffe2_pb2.NetDef()
            predict_net.ParseFromString(predict_net_f.read())
            init_net_f.seek(0)
            init_net = caffe2_pb2.NetDef()
            init_net.ParseFromString(init_net_f.read())
            x = predict_net.external_input[0]
            np.testing.assert_almost_equal(c2_native_run_net(init_net=init_net,
                                                             predict_net=predict_net,
                                                             inputs={x: x_val})[1],
                                           [y_val])