def build_keyframe_graph(self, demonstrations, bandwidth, vectorizor=None): self.G = KeyframeGraph() keyframe_clustering = KeyframeClustering() """ Generate clusters using labeled observations, build the models, graphs, and attributes for each cluster in the KeyFrameGraph """ clusters = keyframe_clustering.get_clusters(demonstrations) for cluster_id in clusters.keys(): self.G.add_node(cluster_id) self.G.nodes[cluster_id]["observations"] = clusters[cluster_id][ "observations"] self.G.nodes[cluster_id]["keyframe_type"] = clusters[cluster_id][ "keyframe_type"] #################################################### # NEED TO BE ABLE TO SUPPORT CC-LFD eventually! # graph.nodes[cluster_id]["applied_constraints"] = [clusters[cluster_id]["applied_constraints"]] self.G.nodes[cluster_id]["applied_constraints"] = [] #################################################### self.G.nodes[cluster_id]["autoconstraints"] = {} # Used to track changes in the autoconstraint assignment according to segmentation and proximity style constraint assignment. self.G.nodes[cluster_id]["autoconstraint_transitions"] = [] self.G.nodes[cluster_id]["model"] = KDEModel(kernel='gaussian', bandwidth=bandwidth) self.G.add_path(self.G.nodes()) if vectorizor is not None: self.G.fit_models(vectorizor) else: self.G.fit_models(get_observation_joint_vector) self.G.identify_primal_observations(get_observation_joint_vector)
def build_keyframe_graph(self, demonstrations, bandwidth): self.G = KeyframeGraph() keyframe_clustering = KeyframeClustering() """ Generate clusters using labeled observations, build the models, graphs, and attributes for each cluster in the KeyFrameGraph """ clusters = keyframe_clustering.get_clusters(demonstrations) for cluster_id in clusters.keys(): self.G.add_node(cluster_id) self.G.nodes[cluster_id]["observations"] = clusters[cluster_id][ "observations"] self.G.nodes[cluster_id]["keyframe_type"] = clusters[cluster_id][ "keyframe_type"] self.G.nodes[cluster_id]["applied_constraints"] = [] self.G.nodes[cluster_id]["model"] = KDEModel(kernel='gaussian', bandwidth=bandwidth) self.G.add_path(self.G.nodes()) self.G.fit_models(get_observation_joint_vector) self.G.identify_primal_observations(get_observation_joint_vector)
def main(): arg_fmt = argparse.RawDescriptionHelpFormatter parser = argparse.ArgumentParser(formatter_class=arg_fmt, description=main.__doc__) required = parser.add_argument_group('required arguments') required.add_argument( '-c', '--config', dest='config', required=True, help='the file path of configuration config.json file ') required.add_argument( '-d', '--directory', dest='directory', required=True, help= 'the directory from which to input labeled demonstration .json files') parser.add_argument('-b', '--bandwidth', type=float, default=.025, metavar='BANDWIDTH', help='gaussian kernel density bandwidth') parser.add_argument('-t', '--threshold', type=int, default=-1200, metavar='THRESHOLD', help='log-liklihood threshold value') parser.add_argument( '-n', '--number_of_samples', type=int, default=50, metavar='NUMBEROFSAMPLES', help='the number of samples to validate for each keyframe') args = parser.parse_args(rospy.myargv()[1:]) # Import the data importer = DataImporter() labeled_demonstrations = importer.load_json_files(args.directory + "/*.json") # Convert imported data into Demonstrations and Observations demonstrations = [] for datum in labeled_demonstrations["data"]: observations = [] for entry in datum: observations.append(Observation(entry)) demonstrations.append(Demonstration(observations)) if len(demonstrations) == 0: rospy.logwarn("No demonstration data to model!!") return 0 rospy.init_node("graph_traverse") """ Create the Cairo LfD environment """ config_filepath = args.config configs = import_configuration(config_filepath) items = ItemFactory(configs).generate_items() constraints = ConstraintFactory(configs).generate_constraints() # We only have just the one robot...for now....... environment = Environment(items=items['items'], robot=items['robots'][0], constraints=constraints, triggers=None) """ Create the moveit_interface """ moveit_interface = SawyerMoveitInterface() moveit_interface.set_velocity_scaling(.35) moveit_interface.set_acceleration_scaling(.25) """ Create KeyframeGraph object. """ graph = KeyframeGraph() cluster_generator = ObservationClusterer() """ Generate clusters using labeled observations, build the models, graphs, and atributes for each cluster in the KeyFrameGraph """ clusters = cluster_generator.generate_clusters(demonstrations) for cluster_id in clusters.keys(): graph.add_node(cluster_id) graph.nodes[cluster_id]["observations"] = clusters[cluster_id][ "observations"] graph.nodes[cluster_id]["keyframe_type"] = clusters[cluster_id][ "keyframe_type"] graph.nodes[cluster_id]["applied_constraints"] = clusters[cluster_id][ "applied_constraints"] graph.nodes[cluster_id]["meta_constraints"] = {} graph.nodes[cluster_id]["model"] = KDEModel(kernel='gaussian', bandwidth=args.bandwidth) graph.add_path(graph.nodes()) graph.fit_models(get_observation_joint_vector) graph._identify_primal_observations(get_observation_joint_vector) rospy.loginfo(graph.get_keyframe_sequence()) for node in graph.get_keyframe_sequence(): print("KEYFRAME: {}".format(node)) print(graph.nodes[node]["keyframe_type"]) print(graph.nodes[node]["applied_constraints"]) print # Create height segmentation and heuristic model position_vectorizor = partial(vectorize_demonstration, vectorizors=[vectorize_robot_position]) position_vectors = np.array(map(position_vectorizor, demonstrations)) # stack all observation vectors X = np.vstack(position_vectors) height_segment_model = BayesianGMMSegmentModel(X, n_components=10) height_heuristic = HeightHeuristicModel(height_segment_model) height_heuristic.fit() height_static_parameters = { "item_id": 1, "reference_height": 0, "direction": "positive" } height_metaconstraint_builder = HeightMetaconstraintBuilder( height_heuristic, height_static_parameters) metaconstraint_assigner = MetaconstraintAssigner( environment, graph, [height_metaconstraint_builder]) metaconstraint_assigner.assign_metaconstraints() """ Build a ConstraintAnalyzer and KeyframeGraphAnalyzer """ constraint_analyzer = ConstraintAnalyzer(environment) graph_analyzer = KeyframeGraphAnalyzer(graph, moveit_interface, get_observation_joint_vector) sample_to_obsv_converter = SawyerSampleConverter(moveit_interface) sampler = KeyframeSampler(constraint_analyzer, sample_to_obsv_converter) """ Generate raw_samples from graph for each keyframe """ for node in graph.get_keyframe_sequence(): n_samples = args.number_of_samples constraints = [ meta.constraints[4] for meta in graph.nodes[node]["metaconstraints"] ] for constraint in constraints: print constraint attempts, samples, matched_ids = sampler.generate_n_valid_samples( graph.nodes[node]["model"], graph.nodes[node]["primal_observation"], constraints, n=n_samples) rospy.loginfo("Keyframe %d: %s valid of %s attempts", node, len(samples), attempts) if len(samples) < n_samples: rospy.loginfo("Keyframe %d: only %s of %s waypoints provided", node, len(samples), n_samples) if len(samples) == 0: # TODO: DOWN SAMPLE METACONSTRAINTS AND KEEP TESTING rospy.loginfo("Keyframe %d has no valid sample observations", node) rospy.loginfo("Sampling with no meta constraints") attempts, samples, matched_ids = sampler.generate_n_valid_samples( graph.nodes[node]["model"], graph.nodes[node]["primal_observation"], [], n=n_samples) # Order sampled points based on their intra-model log-likelihood ranked_samples = sampler.rank_samples(graph.nodes[node]["model"], samples) # User converter object to convert raw sample vectors into LfD observations graph.nodes[node]["samples"] = [ sample_to_obsv_converter.convert(sample, run_fk=True) for sample in ranked_samples ] """ Clear occluded points (points in collision etc,.) """ for node in graph.get_keyframe_sequence(): samples = graph.nodes[node]["samples"] free_samples, trash = graph_analyzer.evaluate_keyframe_occlusion( samples) if free_samples == []: rospy.loginfo( "Keyframe {} has no free samples and will be culled.".format( node)) graph.cull_node(node) else: graph.nodes[node]["free_samples"] = free_samples """ Cull/remove keyframes/nodes that via change point estimation using log-likelihood """ graph_analyzer.cull_keyframes(threshold=args.threshold) # """ Order sampled points based on their intra-model log-likelihood """ # for node in graph.get_keyframe_sequence(): # graph.rank_waypoint_samples(node) output = [] """ Create a sequence of keyframe way points and execute motion plans to reconstruct skill """ joint_config_array = [] for node in graph.get_keyframe_sequence(): output.append((node, graph.nodes[node]["applied_constraints"])) sample = graph.nodes[node]["free_samples"][0] joints = sample.get_joint_angle() joint_config_array.append(joints) print output # moveit_interface.move_to_joint_targets(joint_config_array) return 0
def main(): arg_fmt = argparse.RawDescriptionHelpFormatter parser = argparse.ArgumentParser(formatter_class=arg_fmt, description=main.__doc__) required = parser.add_argument_group('required arguments') required.add_argument( '-c', '--config', dest='config', required=True, help='the file path of configuration config.json file ' ) required.add_argument( '-d', '--directory', dest='directory', required=True, help='the directory from which to input labeled demonstration .json files' ) parser.add_argument( '-b', '--bandwidth', type=float, default=.025, metavar='BANDWIDTH', help='gaussian kernel density bandwidth' ) parser.add_argument( '-t', '--threshold', type=int, default=, metavar='THRESHOLD', help='Kullbach-Leibler divergence threshold value - optional' ) parser.add_argument( '-n', '--number_of_samples', type=int, default=50, metavar='NUMBEROFSAMPLES', help='the number of samples to validate for each keyframe' ) args = parser.parse_args(rospy.myargv()[1:]) # Import the data importer = DataImporter() labeled_demonstrations = importer.load_json_files(args.directory + "/*.json") # Convert imported data into Demonstrations and Observations demonstrations = [] for datum in labeled_demonstrations["data"]: observations = [] for entry in datum: observations.append(Observation(entry)) demonstrations.append(Demonstration(observations)) if len(demonstrations) == 0: rospy.logwarn("No demonstration data to model!!") return 0 rospy.init_node("graph_traverse") """ Create the Cairo LfD environment """ config_filepath = args.config configs = import_configuration(config_filepath) items = ItemFactory(configs).generate_items() constraints = ConstraintFactory(configs).generate_constraints() # We only have just the one robot...for now....... environment = Environment(items=items['items'], robot=items['robots'][0], constraints=constraints, triggers=None) """ Create the moveit_interface """ moveit_interface = SawyerMoveitInterface() moveit_interface.set_velocity_scaling(.35) moveit_interface.set_acceleration_scaling(.25) """ Create KeyframeGraph object. """ graph = KeyframeGraph() cluster_generator = ObservationClusterer() """ Generate clusters using labeled observations, build the models, graphs, and atributes for each cluster in the KeyFrameGraph """ clusters = cluster_generator.generate_clusters(demonstrations) for cluster_id in clusters.keys(): graph.add_node(cluster_id) graph.nodes[cluster_id]["observations"] = clusters[cluster_id]["observations"] graph.nodes[cluster_id]["keyframe_type"] = clusters[cluster_id]["keyframe_type"] graph.nodes[cluster_id]["applied_constraints"] = clusters[cluster_id]["applied_constraints"] graph.nodes[cluster_id]["model"] = KDEModel(kernel='gaussian', bandwidth=args.bandwidth) graph.add_path(graph.nodes()) graph.fit_models(get_observation_joint_vector) graph._identify_primal_observations(get_observation_joint_vector) rospy.loginfo(graph.get_keyframe_sequence()) for node in graph.get_keyframe_sequence(): print("KEYFRAME: {}".format(node)) print(graph.nodes[node]["keyframe_type"]) print(graph.nodes[node]["applied_constraints"]) print """ Build a ConstraintAnalyzer and KeyframeGraphAnalyzer """ constraint_analyzer = ConstraintAnalyzer(environment) graph_analyzer = KeyframeGraphAnalyzer(graph, moveit_interface, get_observation_joint_vector) sample_to_obsv_converter = SawyerSampleConverter(moveit_interface) sampler = KeyframeSampler(constraint_analyzer, sample_to_obsv_converter) model_score_ranker = ModelScoreSampleRanker() configraution_ranker = ConfigurationSpaceSampleRanker() """ Generate raw_samples from graph for each keyframe """ prior_sample = None for node in graph.get_keyframe_sequence(): print "Keyframe {}".format(node) # Keep sampling if graph.nodes[node]["keyframe_type"] == "constraint_transition": rospy.loginfo("Sampling from a constraint transition keyframe.") constraints = [environment.get_constraint_by_id(constraint_id) for constraint_id in graph.nodes[node]["applied_constraints"]] attempts, samples, matched_ids = sampler.generate_n_valid_samples(graph.nodes[node]["model"], graph.nodes[node]["primal_observation"], constraints, n=n_samples) if len(samples) == 0: # Some constraints couldn't be sampled successfully, so using best available samples. diff = list(set(graph.nodes[node]["applied_constraints"]).difference(set(matched_ids))) if len(matched_ids) > 0: rospy.logwarn("Constraints {} couldn't be met so attempting to find valid samples with constraints {}.".format(diff, matched_ids)) constraints = [environment.get_constraint_by_id(constraint_id) for constraint_id in graph.nodes[node]["applied_constraints"]] attempts, samples, matched_ids = sampler.generate_n_valid_samples(graph.nodes[node]["model"], graph.nodes[node]["primal_observation"], constraints, n=n_samples) else: rospy.logwarn("Constraints {} couldn't be met so. Cannot meet any constraints.".format(diff)) else: n_samples = args.number_of_samples constraints = [environment.get_constraint_by_id(constraint_id) for constraint_id in graph.nodes[node]["applied_constraints"]] attempts, samples, matched_ids = sampler.generate_n_valid_samples(graph.nodes[node]["model"], graph.nodes[node]["primal_observation"], constraints, n=n_samples) rospy.loginfo("Keyframe %d: %s valid of %s attempts", node, len(samples), attempts) if len(samples) < n_samples: rospy.loginfo("Keyframe %d: only %s of %s waypoints provided", node, len(samples), n_samples) if len(samples) == 0: rospy.loginfo("Keyframe %d has no valid sample observations", node) graph.cull_node(node) else: # Order sampled points based on their intra-model log-likelihood if prior_sample is None: ranked_samples = model_score_ranker.rank(graph.nodes[node]["model"], samples) else: ranked_samples = configraution_ranker.rank(graph.nodes[node]["model"], samples, prior_sample) prior_sample = ranked_samples[0] # User converter object to convert raw sample vectors into LfD observations graph.nodes[node]["samples"] = [sample_to_obsv_converter.convert(sample, run_fk=True) for sample in ranked_samples] """ Clear occluded points (points in collision etc,.) """ for node in graph.get_keyframe_sequence(): samples = graph.nodes[node]["samples"] free_samples, trash = graph_analyzer.evaluate_keyframe_occlusion(samples) if free_samples == []: rospy.loginfo("Keyframe {} has no free samples and will be culled.".format(node)) graph.cull_node(node) else: graph.nodes[node]["free_samples"] = free_samples """ Cull/remove keyframes/nodes that via change point estimation using log-likelihood """ if "automated_culling_threshold" in config['settings']: automated_threshold = config['settings']['automated_culling_threshold'] else: automated_culling = True graph_analyzer.cull_keyframes(threshold=args.threshold, automated=automated_threshold) # """ Order sampled points based on their intra-model log-likelihood """ # for node in graph.get_keyframe_sequence(): # graph.rank_waypoint_samples(node) output = [] """ Create a sequence of keyframe way points and execute motion plans to reconstruct skill """ joint_config_array = [] for node in graph.get_keyframe_sequence(): output.append((node, graph.nodes[node]["applied_constraints"])) sample = graph.nodes[node]["free_samples"][0] joints = sample.get_joint_angle() joint_config_array.append(joints) print output moveit_interface.move_to_joint_targets(joint_config_array) return 0