Exemple #1
0
def main_data(start, end, **kwargs):
    span = kwargs["span"]
    region = kwargs["region"]
    get_columns = kwargs["get_columns"]
    accumulate = kwargs["accumulate"]

    date_ax, date_ax_str = get_date_ax(start, end)
    N = len(date_ax_str)
    skipping_date_str = []
    accumulate_data = []
    data = []
    for i, day in enumerate(date_ax_str):
        print("{}/{}: {}".format(i + 1, N, day))
        print("start: {}, end: {}".format(start, end))
        year = day[2:4]
        month = day[4:6]

        #ファイル名の生成
        wind_file_name = "../data/csv_w/ecm" + day[2:] + ".csv"
        ice_file_name = "../data/csv_iw/" + day[2:] + ".csv"
        ic0_145_file_name = "../data/csv_ic0/IC0_" + day + ".csv"
        sit_145_file_name = "../data/csv_sit/SIT_" + day + ".csv"
        coeff_file_name = "../data/csv_A_30/ssc_amsr_ads" + str(year) + str(
            month) + "_" + str(span) + "_fin.csv"
        hermert_file_name = "../data/csv_Helmert_30/Helmert_30_" + str(
            day)[:6] + ".csv"
        # wind10m_file_name = "../data/netcdf4/" + day[2:] + ".csv"
        # t2m_file_name = "../data/netcdf4/" + day[2:] + ".csv"

        skipping_boolean = ("coeff" not in get_columns) and (not all([
            os.path.isfile(wind_file_name),
            os.path.isfile(ice_file_name),
            os.path.isfile(coeff_file_name)
        ]))
        if ("ic0_145" in get_columns):
            skipping_boolean = ("coeff" not in get_columns) and (not all([
                os.path.isfile(wind_file_name),
                os.path.isfile(ice_file_name),
                os.path.isfile(coeff_file_name),
                os.path.isfile(ic0_145_file_name)
            ]))
        if ("sit_145" in get_columns):
            skipping_boolean = ("coeff" not in get_columns) and (not all([
                os.path.isfile(wind_file_name),
                os.path.isfile(ice_file_name),
                os.path.isfile(coeff_file_name),
                os.path.isfile(sit_145_file_name)
            ]))

        if skipping_boolean == True:
            print("\tSkipping " + day + " file...")
            date_ax_str.remove(day)
            bb = date(int(day[:4]), int(day[4:6]), int(day[6:]))
            date_ax.remove(bb)
            skipping_date_str.append(day)
            continue

        data = pd.DataFrame({"data_idx": np.array(ocean_grid_145).ravel()})
        if "ex_1" in get_columns:
            print("\t{}\n\t{}\n\t{}\n\t{}".format(wind_file_name,
                                                  ice_file_name,
                                                  coeff_file_name))
            tmp = calc_data.get_w_regression_data(wind_file_name,
                                                  ice_file_name,
                                                  coeff_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "ex_2" in get_columns:
            print("\t{}\n\t{}\n\t{}\n\t{}".format(wind_file_name,
                                                  ice_file_name,
                                                  hermert_file_name))
            tmp = calc_data.get_w_hermert_data(wind_file_name, ice_file_name,
                                               hermert_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "w" in get_columns:
            print("\t{}".format(wind_file_name))
            tmp = calc_data.get_1day_w_data(wind_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "iw" in get_columns:
            print("\t{}".format(ice_file_name))
            tmp = calc_data.get_1day_iw_data(ice_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "ic0_145" in get_columns:
            print("\t{}".format(ic0_145_file_name))
            tmp = calc_data.get_1day_ic0_data(ic0_145_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "sit_145" in get_columns:
            print("\t{}".format(sit_145_file_name))
            tmp = calc_data.get_1day_sit_data(sit_145_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "coeff" in get_columns:
            print("\t{}".format(coeff_file_name))
            tmp = calc_data.get_1month_coeff_data(coeff_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "hermert" in get_columns:
            print("\t{}".format(hermert_file_name))
            tmp = calc_data.get_1month_hermert_data(hermert_file_name)
            data = pd.concat([data, tmp], axis=1)
        """
		if "w10m" in get_columns:
			tmp = calc_data.get_1day_w10m_data(wind10m_file_name)
			data = pd.concat([data, tmp], axis=1)
		if "t2m" in get_columns:
			tmp = calc_data.get_1day_t2m_data(t2m_file_name)
			data = pd.concat([data, tmp], axis=1)
		"""

        data = calc_data.get_masked_region_data(data, region)

        if ("coeff" in get_columns):
            print("\tSelected only coeff data. Getting out of the loop...")
            continue

        if accumulate == True:
            data_1 = data.drop("data_idx", axis=1)
            print("\t{}".format(data_1.columns))
            accumulate_data.append(np.array(data_1))

    if accumulate == True:
        print("accumulate: True\tdata type: array")
        return date_ax, date_ax_str, skipping_date_str, accumulate_data
    else:
        print("accumulate: False\tdata type: DataFrame")
        return date_ax, date_ax_str, skipping_date_str, data
Exemple #2
0
def H_ts_A_month():
	def plot_param_1g(save_name):
		plot_param_list = ["A", "theta", "epsilon2"]
		for i, item in enumerate(plot_param_list):
			plot_data_1g = data_m_1g[item].loc[:, ["mean", "std", "50%"]]
			plot_data_1g["2sigma_pos"] = plot_data_1g['mean']+2*np.sqrt(plot_data_1g['std'])
			plot_data_1g["2sigma_neg"] = plot_data_1g['mean']-2*np.sqrt(plot_data_1g['std'])
			dates = pd.date_range("2013", periods=12, freq='MS')
			plot_data_1g["Month"] = dates
			fig, ax = plt.subplots()
			plt.subplot(311+i)
			ax.plot(dates, plot_data_1g['mean'], '-')
			ax.plot(dates, plot_data_1g["2sigma_pos"], '-')
			ax.plot(dates, plot_data_1g["2sigma_neg"], '-')
			ax.xaxis.set_major_formatter(mdates.DateFormatter('%m'))
			d = plot_data_1g['Month'].values
			plt.fill_between(d, plot_data_1g['2sigma_pos'], plot_data_1g['2sigma_neg'],
				facecolor='green', alpha=0.2, interpolate=True)

		plt.savefig(save_name)
		plt.close()

	def plot_param_2g(save_name):
		plot_param_list = ["A", "theta", "epsilon2"]
		for i, item in enumerate(plot_param_list):
			for j, is_np in enumerate([1,0]):
				plot_data_2g_np_pos = data_m_2g.loc[(is_np), (item, ["mean", "std", "50%"])]
				plot_data_2g_np_pos["2sigma_pos"] = plot_data_2g_np_pos['mean']+2*np.sqrt(plot_data_2g_np_pos['std'])
				plot_data_2g_np_pos["2sigma_neg"] = plot_data_2g_np_pos['mean']-2*np.sqrt(plot_data_2g_np_pos['std'])
				plot_data_2g_np_pos["Month"] = np.arange(1, 13, 1)
				plt.subplot(321+j+i*2)
				plt.plot_date(plot_data_2g_np_pos['Month'], plot_data_2g_np_pos['mean'], '-')
				plt.plot_date(plot_data_2g_np_pos['Month'], plot_data_2g_np_pos["2sigma_pos"], '-')
				plt.plot_date(plot_data_2g_np_pos['Month'], plot_data_2g_np_pos["2sigma_neg"], '-')
				d = plot_data_2g_np_pos['Month'].values
				plt.fill_between(d, plot_data_2g_np_pos['2sigma_pos'], plot_data_2g_np_pos['2sigma_neg'],
					facecolor='green', alpha=0.2, interpolate=True)
	
		plt.savefig(save_name)
		plt.close()

	def plot_param_3g(plot_param_item, save_name):
		for i, is_np in enumerate([1, 0]):
			plot_data_3g_np_pos = data_m_2g.loc[(is_np), (plot_param_item, ["mean", "std", "50%"])]
			plot_data_3g_np_pos["2sigma_pos"] = plot_data_3g_np_pos[(plot_param_item, "mean")] + 2*np.sqrt(plot_data_3g_np_pos[(plot_param_item, "std")])
			plot_data_3g_np_neg["2sigma_neg"] = plot_data_3g_np_neg[(plot_param_item, "mean")] - 2*np.sqrt(plot_data_3g_np_neg[(plot_param_item, "std")])
			#plot_data_3g_np_neg["Month"] = np.arange(1, 13, 1)
			for j, subplot_idx in enumerate([0,1,2]):
				plt.subplot(321+i+subplot_idx*2)
				plt.plot_date(np.arange(1, 13, 1), plot_data_3g_np_pos.loc[(j), (plot_param_item, "mean")], '-')
				plt.plot_date(np.arange(1, 13, 1), plot_data_3g_np_pos.loc[(j), ("2sigma_pos")], '-')
				plt.plot_date(np.arange(1, 13, 1), plot_data_3g_np_pos.loc[(j), ("2sigma_neg")], '-')
				plt.fill_between(np.arange(1, 13, 1), plot_data_3g_np_pos.loc[(j), ("2sigma_pos")], plot_data_3g_np_pos.loc[(j), ("2sigma_neg")],
					facecolor='green', alpha=0.2, interpolate=True)

		plt.savefig(save_name)
		plt.close()

	y_list = ["03", "04", "05", "06", "07", "08", "09", "10", "13", "14", "15", "16"]
	month_list = ["01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12"]
	for y in y_list:
		data_m = pd.DataFrame([])
		for m in month_list:
			yymm = "20" + y + m
			hermert_file_name = "../data/csv_Helmert_30/Helmert_30_" + yymm + ".csv"
			data = calc_data.get_1month_hermert_data(hermert_file_name)
			data = pd.concat([latlon_ex["Name"], data], axis=1)
			#data = data.drop(["Lat", "Lon", "Label", "idx1", "idx2"], axis=1)
			rank_np = np.zeros(145**2)
			rank_np[data[data.Name=="north_polar"].index] = 1
			data["rank_np"] = rank_np
			rank_R2 = np.ones(145**2)
			rank_R2[data[data.R2<=(1/3)**2].index] = 0
			rank_R2[data[data.R2>(2/3)**2].index] = 2
			data["rank_R2"] = rank_R2
			data = data.dropna()
			#https://code.i-harness.com/ja/q/1c29878
			print(data.isnull().sum().sum())
			data["yymm"] = [pd.to_datetime(yymm, format="%Y%m")] * len(data)
			data_m = pd.concat([data_m, data])
			"""
			describe_data = data.groupby("rank_np")[["A", "theta", "epsilon2"]].describe()
			describe_data = data.groupby("rank_np").agg({
				'A': [np.nanmean, np.nanstd, np.nanmedian], 
				'theta': [np.nanmean, np.nanstd, np.nanmedian],
				'epsilon2': [np.nanmean, np.nanstd, np.nanmedian]
				})
			pd.concat([data_all, data.loc[:, ["A", "theta", "epsilon2"]]])
			data_m.append(np.array(data.loc[:, ["A", "theta", "epsilon2"]]))
			"""
		#data_m = np.array(data_m)

		#月ごとに全てのエリアの平均などを取得
		data_m_1g = data_m.groupby("yymm")[["A", "theta", "epsilon2"]].describe().sort_index(level='yymm')
		#月ごとにrank_npで分類したものを取得
		data_m_2g = data_m.groupby(["rank_np", "yymm"])[["A", "theta", "epsilon2"]].describe().sort_index(level='yymm')
		#月ごとにrank_npとrank_R2で分類したものを取得
		data_m_3g = data_m.groupby(["rank_np", "rank_R2", "yymm"])[["A", "theta", "epsilon2"]].describe().sort_index(level='yymm')

		#1gのプロット
		plot_param_1g(save_name)

		#2gのプロット
		plot_param_2g(save_name)

		#3gのプロット
		plot_param_list = ["A", "theta", "epsilon2"]
		for item in plot_param_list:
			plot_param_3g(item, save_name)


		"""
		#data_m_A = data_m[:,:,0].T
		#A_ave = np.nanmean(data_m_A, axis=0)
		#A_std = np.nanstd(data_m_A, axis=0)
		#https://stackoverflow.com/questions/29329725/pandas-and-matplotlib-fill-between-vs-datetime64
		yydd_str = "20" + y
		tmp = pd.to_datetime(["20" + y + m for m in month_list])
		dates = pd.date_range(yydd_str, periods=12, freq='M')
		#dates = pd.to_datetime(["20" + y + m for m in month_list], format="%Y%m")
		data = pd.DataFrame({"A_ave": A_ave, "A_std": A_std, "Date": dates})
		data["A_2sigma_pos"] = data['A_ave']+2*data['A_std']
		data["A_2sigma_neg"] = data['A_ave']-2*data['A_std']
		plt.figure()
		plt.plot_date(data['Date'], data['A_ave'], '-')
		plt.plot_date(data['Date'], data["A_2sigma_pos"], '-')
		plt.plot_date(data['Date'], data["A_2sigma_neg"], '-')
		d = data['Date'].values
		plt.fill_between(d, data['A_2sigma_pos'], data['A_2sigma_neg'],
			facecolor='green', alpha=0.2, interpolate=True)
		plt.xticks(rotation=25)
		"""

		#http://pandas.pydata.org/pandas-docs/version/0.15.0/visualization.html
		"""
		plt.plot(price.index, price, 'k')
		plt.plot(ma.index, ma, 'b')
		plt.fill_between(mstd.index, ma-2*mstd, ma+2*mstd, color='b', alpha=0.2)
		"""

		"""
Exemple #3
0
def H_ts_A_year():
	def y_plot_param_1g(save_name):
		plot_param_list = ["A", "theta", "epsilon2"]
		for i, item in enumerate(plot_param_list):
			plot_data_1g = data_m_1g[item].loc[:, ["mean", "std", "50%"]]
			plot_data_1g["2sigma_pos"] = plot_data_1g['mean']+2*np.sqrt(plot_data_1g['std'])
			plot_data_1g["2sigma_neg"] = plot_data_1g['mean']-2*np.sqrt(plot_data_1g['std'])
			plot_data_1g["Year"] = np.array([2003,2004,2005,2006,2007,2008,2009,2010,2013,2014,2015,2016])
			plt.subplot(311+i)
			plt.plot_date(plot_data_1g['Year'], plot_data_1g['mean'], '-')
			plt.plot_date(plot_data_1g['Year'], plot_data_1g["2sigma_pos"], '-')
			plt.plot_date(plot_data_1g['Year'], plot_data_1g["2sigma_neg"], '-')
			d = plot_data_1g['Year'].values
			plt.fill_between(d, plot_data_1g['2sigma_pos'], plot_data_1g['2sigma_neg'],
				facecolor='green', alpha=0.2, interpolate=True)
		plt.savefig(save_name)
		plt.close()

	def y_plot_param_2g(save_name):
		plot_param_list = ["A", "theta", "epsilon2"]
		for i, item in enumerate(plot_param_list):
			for j, is_np in enumerate([1,0]):
				plot_data_2g_np_pos = data_m_2g.loc[(is_np), (item, ["mean", "std", "50%"])]
				plot_data_2g_np_pos["2sigma_pos"] = plot_data_2g_np_pos['mean']+2*np.sqrt(plot_data_2g_np_pos['std'])
				plot_data_2g_np_pos["2sigma_neg"] = plot_data_2g_np_pos['mean']-2*np.sqrt(plot_data_2g_np_pos['std'])
				plot_data_2g_np_pos["Year"] = np.array([2003,2004,2005,2006,2007,2008,2009,2010,2013,2014,2015,2016])
				plt.subplot(321+j+i*2)
				plt.plot_date(plot_data_2g_np_pos['Year'], plot_data_2g_np_pos['mean'], '-')
				plt.plot_date(plot_data_2g_np_pos['Year'], plot_data_2g_np_pos["2sigma_pos"], '-')
				plt.plot_date(plot_data_2g_np_pos['Year'], plot_data_2g_np_pos["2sigma_neg"], '-')
				d = plot_data_2g_np_pos['Year'].values
				plt.fill_between(d, plot_data_2g_np_pos['2sigma_pos'], plot_data_2g_np_pos['2sigma_neg'],
					facecolor='green', alpha=0.2, interpolate=True)
		
		plt.savefig(save_name)
		plt.close()

	def y_plot_param_3g(plot_param_item, save_name):
		for i, is_np in enumerate([1, 0]):
			plot_data_3g_np_pos = data_m_2g.loc[(is_np), (plot_param_item, ["mean", "std", "50%"])]
			plot_data_3g_np_pos["2sigma_pos"] = plot_data_3g_np_pos[(plot_param_item, "mean")] + 2*np.sqrt(plot_data_3g_np_pos[(plot_param_item, "std")])
			plot_data_3g_np_neg["2sigma_neg"] = plot_data_3g_np_neg[(plot_param_item, "mean")] - 2*np.sqrt(plot_data_3g_np_neg[(plot_param_item, "std")])
			#plot_data_3g_np_neg["Month"] = np.arange(1, 13, 1)
			year_array = np.array([2003,2004,2005,2006,2007,2008,2009,2010,2013,2014,2015,2016])
			for j, subplot_idx in enumerate([0,1,2]):
				plt.subplot(321+i+subplot_idx*2)
				plt.plot_date(year_array, plot_data_3g_np_pos.loc[(j), (plot_param_item, "mean")], '-')
				plt.plot_date(year_array, plot_data_3g_np_pos.loc[(j), ("2sigma_pos")], '-')
				plt.plot_date(year_array, plot_data_3g_np_pos.loc[(j), ("2sigma_neg")], '-')
				plt.fill_between(year_array, plot_data_3g_np_pos.loc[(j), ("2sigma_pos")], plot_data_3g_np_pos.loc[(j), ("2sigma_neg")],
					facecolor='green', alpha=0.2, interpolate=True)
		plt.savefig(save_name)
		plt.close()

	y_list = ["03", "04", "05", "06", "07", "08", "09", "10", "13", "14", "15", "16"]
	month_list = ["01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12"]

	for m in month_list:
		data_m = pd.DataFrame([])
		for y in y_list:
			yymm = "20" + y + m
			hermert_file_name = "../data/csv_Helmert_30/Helmert_30_" + yymm + ".csv"
			data = calc_data.get_1month_hermert_data(hermert_file_name)
			data = pd.concat([latlon_ex["Name"], data], axis=1)
			#data = data.drop(["Lat", "Lon", "Label", "idx1", "idx2"], axis=1)
			rank_np = np.zeros(145**2)
			rank_np[data[data.Name=="north_polar"].index] = 1
			data["rank_np"] = rank_np
			rank_R2 = np.ones(145**2)
			rank_R2[data[data.R2<=(1/3)**2].index] = 0
			rank_R2[data[data.R2>(2/3)**2].index] = 2
			data["rank_R2"] = rank_R2
			data = data.dropna()
			#https://code.i-harness.com/ja/q/1c29878
			print(data.isnull().sum().sum())
			data["Year"] = [int("20"+y)] * len(data)
			data_m = pd.concat([data_m, data])

		#年ごとに全てのエリアの平均などを取得
		data_m_1g = data_m.groupby("Year")[["A", "theta", "epsilon2"]].describe().sort_index(level='Year')
		#年ごとにrank_npで分類したものを取得
		data_m_2g = data_m.groupby(["rank_np", "Year"])[["A", "theta", "epsilon2"]].describe().sort_index(level='Year')
		#年ごとにrank_npとrank_R2で分類したものを取得
		data_m_3g = data_m.groupby(["rank_np", "rank_R2", "Year"])[["A", "theta", "epsilon2"]].describe().sort_index(level='Year')

		#1gのプロット
		y_plot_param_1g(save_name)

		#2gのプロット
		y_plot_param_2g(save_name)

		#3gのプロット
		plot_param_list = ["A", "theta", "epsilon2"]
		for item in plot_param_list:
			y_plot_param_3g(item, save_name)
Exemple #4
0
def H_ts_A_month(m_plot=True, y_plot=True):
    dirs_1g = "../result_h/H_ts_month_1g/"
    mkdir(dirs_1g)
    dirs_2g = "../result_h/H_ts_month_2g/"
    mkdir(dirs_2g)
    dirs_3g = "../result_h/H_ts_month_3g/"
    mkdir(dirs_3g)
    dirs_year = "../result_h/H_ts_year/"
    mkdir(dirs_year)

    def plot_param_1g(data_m_1g, save_name):
        fig, axes = plt.subplots(3, 1)
        dates = pd.date_range("2001", periods=12, freq='MS')

        plot_data_1g = data_m_1g["A"].loc[:, ["mean", "std", "50%"]]
        plot_data_1g["2sigma_pos"] = plot_data_1g['mean'] + 1 * np.sqrt(
            plot_data_1g['std'])
        plot_data_1g["2sigma_neg"] = plot_data_1g['mean'] - 1 * np.sqrt(
            plot_data_1g['std'])
        #plot_data_1g["Month"] = dates
        axes[0].plot(dates, plot_data_1g['mean'], '-', color="k")
        #d = plot_data_1g['Month'].values
        axes[0].fill_between(dates,
                             plot_data_1g['2sigma_pos'],
                             plot_data_1g['2sigma_neg'],
                             facecolor='green',
                             alpha=0.3,
                             interpolate=True)
        #axes[0].set_ylim([0, 0.025])
        axes[0].set_ylabel('A')
        #axes[0].set_title('A, ' + str_year)
        axes[0].xaxis.set_major_formatter(mdates.DateFormatter('%m'))

        plot_data_1g_theta = data_m_1g["theta"].loc[:, ["mean", "std", "50%"]]
        plot_data_1g_theta["2sigma_pos"] = plot_data_1g_theta[
            'mean'] + 2 * np.sqrt(plot_data_1g_theta['std'])
        plot_data_1g_theta["2sigma_neg"] = plot_data_1g_theta[
            'mean'] - 2 * np.sqrt(plot_data_1g_theta['std'])
        axes[1].plot(dates, plot_data_1g_theta['mean'], '-', color="k")
        axes[1].fill_between(dates,
                             plot_data_1g_theta['2sigma_pos'],
                             plot_data_1g_theta['2sigma_neg'],
                             facecolor='lightskyblue',
                             alpha=0.3,
                             interpolate=True)
        #axes[1].set_ylim([-180, 180])
        axes[1].set_ylim([-60, 60])
        #axes[1].set_yticks([-180, -120, -60, 0, 60, 120, 180])
        axes[1].set_ylabel('theta')
        #axes[1].set_title('theta, ' + str_year)
        axes[1].xaxis.set_major_formatter(mdates.DateFormatter('%m'))

        plot_data_1g_e2 = data_m_1g["epsilon2"].loc[:, ["mean", "std", "50%"]]
        plot_data_1g_e2["2sigma_pos"] = plot_data_1g_e2['mean'] + 2 * np.sqrt(
            plot_data_1g_e2['std'])
        plot_data_1g_e2["2sigma_neg"] = plot_data_1g_e2['mean'] - 2 * np.sqrt(
            plot_data_1g_e2['std'])
        axes[2].plot(dates, plot_data_1g_e2['mean'], '-', color="k")
        axes[2].fill_between(dates,
                             plot_data_1g_e2['2sigma_pos'],
                             plot_data_1g_e2['2sigma_neg'],
                             facecolor='silver',
                             alpha=0.3,
                             interpolate=True)
        #axes[2].set_ylim([-180, 180])
        #axes[2].set_yticks([-180, -120, -60, 0, 60, 120, 180])
        axes[2].set_ylabel('e2')
        #axes[2].set_title('e2, ' + str_year)
        axes[2].xaxis.set_major_formatter(mdates.DateFormatter('%m'))

        #plt.setp(axes[0].get_xticklabels(), visible=False)
        #plt.setp(axes[1].get_xticklabels(), visible=False)
        plt.tight_layout()

        plt.savefig(save_name, dpi=900)
        plt.close()

    def plot_param_2g(data_m_2g, save_name):
        plot_param_list = ["A", "theta", "epsilon2"]
        fig, axes = plt.subplots(3, 2)
        dates = pd.date_range("2001", periods=12, freq='MS')
        axes[0, 0].set_title("Polar Region")
        axes[0, 1].set_title("Coastal Region")
        for i, item in enumerate(plot_param_list):
            for j, is_np in enumerate([1, 0]):
                plot_data_2g_np_pos = data_m_2g.loc[(is_np),
                                                    (item,
                                                     ["mean", "std", "50%"])]
                plot_data_2g_np_pos["2sigma_pos"] = plot_data_2g_np_pos[
                    (item,
                     'mean')] + 2 * np.sqrt(plot_data_2g_np_pos[(item, 'std')])
                plot_data_2g_np_pos["2sigma_neg"] = plot_data_2g_np_pos[
                    (item,
                     'mean')] - 2 * np.sqrt(plot_data_2g_np_pos[(item, 'std')])
                #plot_data_2g_np_pos["Month"] = np.arange(1, 13, 1)
                ax = axes[i, j]
                #plt.subplot(321+j+i*2)
                ax.plot_date(dates,
                             plot_data_2g_np_pos[(item, 'mean')],
                             '-',
                             color="k")
                #d = plot_data_2g_np_pos['Month'].values
                ax.fill_between(dates,
                                plot_data_2g_np_pos['2sigma_pos'],
                                plot_data_2g_np_pos['2sigma_neg'],
                                facecolor='lightskyblue',
                                alpha=0.3,
                                interpolate=True)
                if i == 0:
                    ax.set_ylim([0, 0.025])
                    #ax.set_yticks([0, 0.025])
                elif i == 1:
                    ax.set_ylim([-180, 180])
                    ax.set_yticks([-180, -120, -60, 0, 60, 120, 180])
                elif i == 2:
                    ax.set_ylim([0, 1.5])
                    #ax.set_yticks([0, 0.025])
                ax.xaxis.set_major_formatter(mdates.DateFormatter('%m'))

        axes[0, 0].set_ylabel('A')
        axes[1, 0].set_ylabel('theta')
        axes[2, 0].set_ylabel('e2')
        axes[2, 0].set_xlabel("Month")
        axes[2, 1].set_xlabel("Month")
        """
		plt.setp(axes[0, 0].get_xticklabels(), visible=False)
		plt.setp(axes[1, 0].get_xticklabels(), visible=False)
		plt.setp(axes[0, 1].get_xticklabels(), visible=False)
		plt.setp(axes[1, 1].get_xticklabels(), visible=False)
		plt.setp(axes[0, 1].get_yticklabels(), visible=False)
		plt.setp(axes[1, 1].get_yticklabels(), visible=False)
		plt.setp(axes[2, 1].get_yticklabels(), visible=False)
		"""
        plt.tight_layout()

        plt.savefig(save_name, dpi=900)
        plt.close()

    def plot_param_3g(data_m_3g, plot_param_item, save_name):
        fig, axes = plt.subplots(3, 2)
        dates = pd.date_range("2001", periods=12, freq='MS')
        axes[0, 0].set_title("Polar Region")
        axes[0, 1].set_title("Coastal Region")
        for i, is_np in enumerate([1, 0]):
            plot_data_3g_np_pos = data_m_3g.loc[(is_np),
                                                (plot_param_item,
                                                 ["mean", "std", "50%"])]
            plot_data_3g_np_pos["2sigma_pos"] = plot_data_3g_np_pos[
                (plot_param_item, "mean")] + 2 * np.sqrt(plot_data_3g_np_pos[
                    (plot_param_item, "std")])
            plot_data_3g_np_pos["2sigma_neg"] = plot_data_3g_np_pos[
                (plot_param_item, "mean")] - 2 * np.sqrt(plot_data_3g_np_pos[
                    (plot_param_item, "std")])
            for j, subplot_idx in enumerate([2, 1, 0]):
                ax = axes[j, i]
                ax.plot(dates,
                        plot_data_3g_np_pos.loc[(subplot_idx),
                                                (plot_param_item, "mean")],
                        '-',
                        color="k")
                ax.fill_between(dates,
                                plot_data_3g_np_pos.loc[(subplot_idx),
                                                        ("2sigma_pos")],
                                plot_data_3g_np_pos.loc[(subplot_idx),
                                                        ("2sigma_neg")],
                                facecolor='lightskyblue',
                                alpha=0.3,
                                interpolate=True)
        if plot_param_item == "A":
            for ax in axes:
                ax.set_ylim([0, 0.025])
        elif plot_param_item == "theta":
            for ax in axes:
                ax.set_ylim([-180, 180])
                ax.set_yticks([-180, -120, -60, 0, 60, 120, 180])
        elif plot_param_item == "e2":
            for ax in axes:
                ax.set_ylim([0, 1.5])
        axes[0, 0].set_ylabel('R2 High')
        axes[1, 0].set_ylabel('R2 Middle')
        axes[2, 0].set_ylabel('R2 Low')
        axes[2, 0].set_xlabel("Month")
        axes[2, 1].set_xlabel("Month")
        """
		plt.setp(axes[0, 0].get_xticklabels(), visible=False)
		plt.setp(axes[1, 0].get_xticklabels(), visible=False)
		plt.setp(axes[0, 1].get_xticklabels(), visible=False)
		plt.setp(axes[1, 1].get_xticklabels(), visible=False)
		plt.setp(axes[0, 1].get_yticklabels(), visible=False)
		plt.setp(axes[1, 1].get_yticklabels(), visible=False)
		plt.setp(axes[2, 1].get_yticklabels(), visible=False)
		"""
        plt.tight_layout()

        plt.savefig(save_name, dpi=900)
        plt.close()

    def plot_param_1g_through_years(data_1g_dic, save_name):
        fig, axes = plt.subplots(3, 1)
        dates1 = pd.date_range("2003", "2010", freq='MS').append(
            pd.date_range("2013", "2017", freq='MS'))
        dates = dates1[:-1]

        data_A = pd.DataFrame([])
        data_theta = pd.DataFrame([])
        data_e2 = pd.DataFrame([])
        for y in y_list:
            data_A = pd.concat([data_A, data_1g_dic[y]["1g_A"]])
            data_theta = pd.concat([data_theta, data_1g_dic[y]["1g_theta"]])
            data_e2 = pd.concat([data_e2, data_1g_dic[y]["1g_e2"]])

        axes[0].plot(dates, data_A['mean'], '-', color="k")
        axes[0].fill_between(dates,
                             data_A['mean'] + 2 * np.sqrt(data_A['std']),
                             data_A['mean'] - 2 * np.sqrt(data_A['std']),
                             facecolor='green',
                             alpha=0.3,
                             interpolate=True)
        axes[0].set_ylim([0, 0.025])
        axes[0].set_ylabel('A')
        axes[0].xaxis.set_major_formatter(mdates.DateFormatter('%y%m'))

        axes[1].plot(dates, data_theta['mean'], '-', color="k")
        axes[1].fill_between(
            dates,
            data_theta['mean'] + 2 * np.sqrt(data_theta['std']),
            data_theta['mean'] - 2 * np.sqrt(data_theta['std']),
            facecolor='green',
            alpha=0.3,
            interpolate=True)
        axes[1].set_ylim([-180, 180])
        axes[1].set_ylabel('theta')
        axes[1].xaxis.set_major_formatter(mdates.DateFormatter('%y%m'))

        axes[2].plot(dates, data_e2['mean'], '-', color="k")
        axes[2].fill_between(dates,
                             data_e2['mean'] + 2 * np.sqrt(data_e2['std']),
                             data_e2['mean'] - 2 * np.sqrt(data_e2['std']),
                             facecolor='green',
                             alpha=0.3,
                             interpolate=True)
        #axes[2].set_ylim([0, 0.025])
        axes[2].set_ylabel('e2')
        axes[2].xaxis.set_major_formatter(mdates.DateFormatter('%y%m'))

        plt.tight_layout()
        plt.savefig(save_name, dpi=900)
        plt.close()

    def plot_param_2g_through_years(data_2g_dic, save_name):
        fig, axes = plt.subplots(3, 2)
        dates1 = pd.date_range("2003", "2010", freq='MS').append(
            pd.date_range("2013", "2017", freq='MS'))
        dates = dates1[:-1]

        data_A_np = pd.DataFrame([])
        data_A_coastal = pd.DataFrame([])
        data_theta_np = pd.DataFrame([])
        data_theta_coastal = pd.DataFrame([])
        data_e2_np = pd.DataFrame([])
        data_e2_coastal = pd.DataFrame([])
        for y in y_list:
            data_A_np = pd.concat([data_A_np, data_2g_dic[y]["2g_A_polar"]])
            data_A_coastal = pd.concat(
                [data_A_coastal, data_2g_dic[y]["2g_A_coastal"]])
            data_theta_np = pd.concat(
                [data_theta_np, data_2g_dic[y]["2g_theta_polar"]])
            data_theta_coastal = pd.concat(
                [data_theta_coastal, data_2g_dic[y]["2g_theta_coastal"]])
            data_e2_np = pd.concat([data_e2_np, data_2g_dic[y]["2g_e2_polar"]])
            data_e2_coastal = pd.concat(
                [data_e2_coastal, data_2g_dic[y]["2g_e2_coastal"]])

        axes[0, 0].plot(dates, data_A_np['mean'], '-', color="k")
        axes[0,
             0].fill_between(dates,
                             data_A_np['mean'] + 2 * np.sqrt(data_A_np['std']),
                             data_A_np['mean'] - 2 * np.sqrt(data_A_np['std']),
                             facecolor='lightskyblue',
                             alpha=0.3,
                             interpolate=True)
        axes[0, 0].set_ylim([0, 0.025])
        axes[0, 0].set_ylabel('A')
        axes[0, 0].xaxis.set_major_formatter(mdates.DateFormatter('%y%m'))

        axes[0, 1].plot(dates, data_A_coastal['mean'], '-', color="k")
        axes[0, 1].fill_between(
            dates,
            data_A_coastal['mean'] + 2 * np.sqrt(data_A_coastal['std']),
            data_A_coastal['mean'] - 2 * np.sqrt(data_A_coastal['std']),
            facecolor='lightskyblue',
            alpha=0.3,
            interpolate=True)
        axes[0, 1].set_ylim([0, 0.025])
        axes[0, 1].xaxis.set_major_formatter(mdates.DateFormatter('%y%m'))

        axes[1, 0].plot(dates, data_theta_np['mean'], '-', color="k")
        axes[1, 0].fill_between(
            dates,
            data_theta_np['mean'] + 2 * np.sqrt(data_theta_np['std']),
            data_theta_np['mean'] - 2 * np.sqrt(data_theta_np['std']),
            facecolor='lightskyblue',
            alpha=0.3,
            interpolate=True)
        axes[1, 0].set_ylim([-180, 180])
        axes[1, 0].set_ylabel('theta')
        axes[1, 0].xaxis.set_major_formatter(mdates.DateFormatter('%y%m'))

        axes[1, 1].plot(dates, data_theta_coastal['mean'], '-', color="k")
        axes[1, 1].fill_between(dates,
                                data_theta_coastal['mean'] +
                                2 * np.sqrt(data_theta_coastal['std']),
                                data_theta_coastal['mean'] -
                                2 * np.sqrt(data_theta_coastal['std']),
                                facecolor='lightskyblue',
                                alpha=0.3,
                                interpolate=True)
        axes[1, 1].set_ylim([-180, 180])
        axes[1, 1].xaxis.set_major_formatter(mdates.DateFormatter('%y%m'))

        axes[2, 0].plot(dates, data_e2_np['mean'], '-', color="k")
        axes[2, 0].fill_between(
            dates,
            data_e2_np['mean'] + 2 * np.sqrt(data_e2_np['std']),
            data_e2_np['mean'] - 2 * np.sqrt(data_e2_np['std']),
            facecolor='lightskyblue',
            alpha=0.3,
            interpolate=True)
        #axes[2, 0].set_ylim([0, 0.025])
        axes[2, 0].set_ylabel('e2')
        axes[2, 0].xaxis.set_major_formatter(mdates.DateFormatter('%y%m'))

        axes[2, 1].plot(dates, data_e2_coastal['mean'], '-', color="k")
        axes[2, 1].fill_between(
            dates,
            data_e2_coastal['mean'] + 2 * np.sqrt(data_e2_coastal['std']),
            data_e2_coastal['mean'] - 2 * np.sqrt(data_e2_coastal['std']),
            facecolor='lightskyblue',
            alpha=0.3,
            interpolate=True)
        #axes[2, 1].set_ylim([0, 0.025])
        axes[2, 1].xaxis.set_major_formatter(mdates.DateFormatter('%y%m'))

        #axes[2, 0].set_xlabel("Year")
        #axes[2, 1].set_xlabel("Year")
        plt.tight_layout()
        plt.savefig(save_name, dpi=900)
        plt.close()

    y_list = [
        "03", "04", "05", "06", "07", "08", "09", "10", "13", "14", "15", "16"
    ]
    month_list = [
        "01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12"
    ]
    data_1g_dic = {}
    data_2g_dic = {}
    data_3g_dic = {}
    for y in y_list:
        data_m = pd.DataFrame([])
        for m in month_list:
            yymm = "20" + y + m
            hermert_file_name = "../data/csv_Helmert_30/Helmert_30_" + yymm + ".csv"
            data = calc_data.get_1month_hermert_data(hermert_file_name)
            data = pd.concat([latlon_ex["Name"], data], axis=1)
            #data = data.drop(["Lat", "Lon", "Label", "idx1", "idx2"], axis=1)
            rank_np = np.zeros(145**2)
            rank_np[data[data.Name == "north_polar"].index] = 1
            data["rank_np"] = rank_np
            rank_R2 = np.ones(145**2)
            rank_R2[data[data.R2 <= (1 / 3)**2].index] = 0
            rank_R2[data[data.R2 > (2 / 3)**2].index] = 2
            data["rank_R2"] = rank_R2
            data = data.dropna()
            #https://code.i-harness.com/ja/q/1c29878
            print(data.isnull().sum().sum())
            data["yymm"] = [pd.to_datetime(yymm, format="%Y%m")] * len(data)
            data_m = pd.concat([data_m, data])

        #月ごとに全てのエリアの平均などを取得
        data_m_1g = data_m.groupby("yymm")[[
            "A", "theta", "epsilon2"
        ]].describe().sort_index(level='yymm')
        #月ごとにrank_npで分類したものを取得
        data_m_2g = data_m.groupby(["rank_np", "yymm"
                                    ])[["A", "theta", "epsilon2"
                                        ]].describe().sort_index(level='yymm')
        #月ごとにrank_npとrank_R2で分類したものを取得
        data_m_3g = data_m.groupby(["rank_np", "rank_R2", "yymm"
                                    ])[["A", "theta", "epsilon2"
                                        ]].describe().sort_index(level='yymm')

        if m_plot == True:
            #1gのプロット
            save_name_1g = dirs_1g + "1g_" + y + ".png"
            plot_param_1g(data_m_1g, save_name_1g)
            #2gのプロット
            save_name_2g = dirs_2g + "2g_" + y + ".png"
            plot_param_2g(data_m_2g, save_name_2g)
            #3gのプロット
            plot_param_list = ["A", "theta", "epsilon2"]
            for item in plot_param_list:
                save_name_3g = dirs_3g + item + "/" + "3g_" + y + ".png"
                plot_param_3g(data_m_3g, item, save_name_3g)
        """
		sns.tsplot(data=data_m_A, ci="sd")
		plt.plot(np.nanmean(data_m_A, axis=0))
		data_m_theta = data_m[:,:,1].T
		sns.tsplot(data=data_m_theta, ci="sd")
		data_m_e2 = data_m[:,:,2].T
		sns.tsplot(data=data_m_e2, ci="sd")
		"""

        tmp_1g = {
            "1g_A": data_m_1g["A"].loc[:, ["mean", "std", "50%"]],
            "1g_theta": data_m_1g["theta"].loc[:, ["mean", "std", "50%"]],
            "1g_e2": data_m_1g["epsilon2"].loc[:, ["mean", "std", "50%"]]
        }
        data_1g_dic[y] = tmp_1g
        tmp_2g = {
            "2g_A_polar":
            data_m_2g.loc[(1), ("A", ["mean", "std", "50%"])],
            "2g_A_coastal":
            data_m_2g.loc[(0), ("A", ["mean", "std", "50%"])],
            "2g_theta_polar":
            data_m_2g.loc[(1), ("theta", ["mean", "std", "50%"])],
            "2g_theta_coastal":
            data_m_2g.loc[(0), ("theta", ["mean", "std", "50%"])],
            "2g_e2_polar":
            data_m_2g.loc[(1), ("epsilon2", ["mean", "std", "50%"])],
            "2g_e2_coastal":
            data_m_2g.loc[(0), ("epsilon2", ["mean", "std", "50%"])]
        }
        data_2g_dic[y] = tmp_2g
        tmp_3g = {
            "3g_A_polar":
            data_m_3g.loc[(1), ("A", ["mean", "std", "50%"])],
            "3g_A_coastal":
            data_m_3g.loc[(0), ("A", ["mean", "std", "50%"])],
            "3g_theta_polar":
            data_m_3g.loc[(1), ("theta", ["mean", "std", "50%"])],
            "3g_theta_coastal":
            data_m_3g.loc[(0), ("theta", ["mean", "std", "50%"])],
            "3g_e2_polar":
            data_m_3g.loc[(1), ("epsilon2", ["mean", "std", "50%"])],
            "3g_e2_coastal":
            data_m_3g.loc[(0), ("epsilon2", ["mean", "std", "50%"])]
        }
        data_3g_dic[y] = tmp_3g

    if y_plot == True:
        #1g
        save_name_1g_year = dirs_year + "1g.png"
        plot_param_1g_through_years(data_1g_dic, save_name_1g_year)
        #2g
        save_name_2g_year = dirs_year + "2g.png"
        plot_param_2g_through_years(data_2g_dic, save_name_2g_year)

    return data_1g_dic, data_2g_dic, data_3g_dic