from pathlib import Path

from camelsml import evaluate, load_config

cfg = load_config("run_config.txt")
cfg["val_basin_file"] = Path(
    f"gb_split/split_seed_19970204/basins_validation.txt")
for k in range(2, 5):
    runs = list(Path(f"/work/bernharl/train_us_val_gb/{k}").glob("*"))
    print(runs)
    if len(runs) != 1:
        raise RuntimeError(
            f"Amount of runs per cross val should be 1, not {len(runs)}")
    cfg["run_dir"] = runs[0]
    cfg["train_basin_file"] = Path(
        f"cv/cross_validation_seed_19970204/{k}/basins_train.txt")
    cfg["eval_dir"] = Path(f"/work/bernharl/train_us_val_gb/val_gb/{k}")
    for i in range(1, cfg["epochs"] + 1):
        evaluate(cfg, split="val", epoch=i)
Exemple #2
0
from pathlib import Path

from camelsml import load_config, train

cfg = load_config(cfg_file="run_config.txt", device="cuda:0", num_workers=60)
cfg["test_basin_file"] = Path(
    "/home/bernhard/git/Master-Thesis/runs/combined_dataset/train_gb_val_us/cv/cross_validation_seed_19970204/basins_test.txt"
)
for i in range(0, 5):
    cfg["run_dir"] = Path(f"{i}/")
    cfg["train_basin_file"] = Path(
        f"/home/bernhard/git/Master-Thesis/runs/combined_dataset/train_gb_val_us/cv/cross_validation_seed_19970204/{i}/basins_train.txt"
    )
    cfg["val_basin_file"] = Path(
        f"/home/bernhard/git/Master-Thesis/runs/combined_dataset/train_gb_val_us/cv/cross_validation_seed_19970204/{i}/basins_val.txt"
    )
    train(cfg)
Exemple #3
0
from pathlib import Path
import pickle
import random

import numpy as np

from camelsml import permutation_test, load_config

permutation_folder = Path("permutation")
permutation_folder.mkdir(exist_ok=True)
cfg = load_config("run_config.txt", device="cuda:0", num_workers=24)
np.random.seed(cfg["seed"])
random.seed(cfg["seed"])
for i in range(0, 1):
    save_path = permutation_folder / f"{i}"
    save_path.mkdir(exist_ok=True)
    cv_dir = list((Path().absolute() / f"{i}").glob("*"))
    if len(cv_dir) != 1:
        raise RuntimeError(f"cv_dir must contain only one run")
    else:
        cv_dir = cv_dir[0]
    cfg["run_dir"] = cv_dir
    cfg["train_basin_file"] = Path(
        f"/home/bernhard/git/Master-Thesis/runs/correlation_reduction/cross_validation/cross_validation_seed_19970204/{i}/basins_train.txt"
    )
    cfg["val_basin_file"] = Path(
        f"/home/bernhard/git/Master-Thesis/runs/correlation_reduction/cross_validation/cross_validation_seed_19970204/{i}/basins_val.txt"
    )
    with open(save_path / "i_list.pickle", "wb") as outfile:
        pickle.dump(permutation_test(cfg, k=2), outfile)
Exemple #4
0
from pathlib import Path

import numpy as np

from camelsml import (
    split_basins,
    cross_validation_split,
    load_config,
    combine_cv_datasets,
)


cfg = load_config(cfg_file="../camels_root_info.txt")
cv_folder_us = Path(
    "/home/bernhard/git/Master-Thesis/runs/combined_dataset/train_us_val_gb/cv"
)
cv_folder_gb = Path(
    "/home/bernhard/git/Master-Thesis/runs/combined_dataset/train_gb_val_us/cv"
)
store_folder = Path("/home/bernhard/git/Master-Thesis/runs/combined_dataset/mixed/cv")


combine_cv_datasets(
    cv_folder_1=cv_folder_us,
    cv_folder_2=cv_folder_gb,
    k=5,
    seed=19970204,
    normalize=True,
    store_folder=store_folder,
    dataset=cfg["dataset"],
    timeseries=cfg["timeseries"],
Exemple #5
0
from time import sleep
from pathlib import Path

from camelsml import evaluate, load_config

cfg = load_config("run_config.txt", device="cuda:0")
cfg["val_basin_file"] = Path(
    f"gb_split/split_seed_19970204/basins_validation.txt")
for k in range(3, 4):
    runs = list(Path(f"{k}").glob("*"))
    print(runs)
    if len(runs) != 1:
        raise RuntimeError(
            f"Amount of runs per cross val should be 1, not {len(runs)}")
    cfg["run_dir"] = runs[0]
    cfg["train_basin_file"] = Path(
        f"cv/cross_validation_seed_19970204/{k}/basins_train.txt")
    cfg["eval_dir"] = Path(f"val_gb/{k}")
    if k == 0:
        start = 25
    else:
        start = 1
    for i in range(start, cfg["epochs"] + 1):
        evaluate(cfg, split="val", epoch=i)
Exemple #6
0
from pathlib import Path

from camelsml import load_config, train, split_basins

cfg = load_config("training_runs/test/test.txt",
                  device="cuda:0",
                  num_workers=24)
"""split_basins(
    cfg["camels_root"],
    "/home/bernhard/git/ealstm_regional_modeling_camels_gb/data/basin_list.txt",
    split=[0.67, 0.33],
    store_folder="training_runs",
    seed=1010,
)"""
train(cfg)