def main(): import sys from glob import iglob from itertools import groupby np.set_printoptions(precision=4, suppress=True) folder = sys.argv[1] saved_files = iglob(folder + '/*.lh0') hmodels = [ HomographyModel.load_from_file(f) for f in saved_files ] print '%d hmodels\n' % len(hmodels) itag_getter = lambda e: e.itag hmodels.sort(key=itag_getter) def random_combinations(n, m): n_choose_m = [ x for x in xrange(2**n) if bin(x).count('1') == m ] return np.random.choice(n_choose_m, 200, replace=False) def take_by_bitindex(list_, bits_as_int): indices = xrange(len(list_)-1, -1, -1) bool_bits = ( bool(bits_as_int & 2**i) for i in indices ) return [ entry for entry, bit in zip(list_, bool_bits) if bit ] for itag, group in groupby(hmodels, key=itag_getter): group = list(group) homographies = [ hm.homography_at_center() for hm in group ] # K = robust_estimate_intrinsics_noskew(homographies) # print np.array(matrix_to_intrinsics(K)) K = estimate_intrinsics_noskew(homographies) print np.array(matrix_to_intrinsics(K)) bootstrap_estimates = [] for combination in random_combinations(len(homographies), 3): subset = take_by_bitindex(homographies, combination) try: K = estimate_intrinsics_noskew(subset) bootstrap_estimates.append(matrix_to_intrinsics(K)) except: pass bootstrap_estimates = np.vstack(bootstrap_estimates) from scipy.spatial.distance import pdist, squareform distances = squareform(pdist(bootstrap_estimates)) medoid_ix = np.argmin(distances.mean(axis=0)) print bootstrap_estimates[medoid_ix] print np.median(bootstrap_estimates, axis=0)
def main(): import sys from glob import iglob from itertools import groupby np.set_printoptions(precision=4, suppress=True) folder = sys.argv[1] saved_files = iglob(folder + '/*.lh0') hmodels = [HomographyModel.load_from_file(f) for f in saved_files] print '%d hmodels\n' % len(hmodels) itag_getter = lambda e: e.itag hmodels.sort(key=itag_getter) def random_combinations(n, m): n_choose_m = [x for x in xrange(2**n) if bin(x).count('1') == m] return np.random.choice(n_choose_m, 200, replace=False) def take_by_bitindex(list_, bits_as_int): indices = xrange(len(list_) - 1, -1, -1) bool_bits = (bool(bits_as_int & 2**i) for i in indices) return [entry for entry, bit in zip(list_, bool_bits) if bit] for itag, group in groupby(hmodels, key=itag_getter): group = list(group) homographies = [hm.homography_at_center() for hm in group] # K = robust_estimate_intrinsics_noskew(homographies) # print np.array(matrix_to_intrinsics(K)) K = estimate_intrinsics_noskew(homographies) print np.array(matrix_to_intrinsics(K)) bootstrap_estimates = [] for combination in random_combinations(len(homographies), 3): subset = take_by_bitindex(homographies, combination) try: K = estimate_intrinsics_noskew(subset) bootstrap_estimates.append(matrix_to_intrinsics(K)) except: pass bootstrap_estimates = np.vstack(bootstrap_estimates) from scipy.spatial.distance import pdist, squareform distances = squareform(pdist(bootstrap_estimates)) medoid_ix = np.argmin(distances.mean(axis=0)) print bootstrap_estimates[medoid_ix] print np.median(bootstrap_estimates, axis=0)
def refine_homography_subset(args): """ Load homographies pickled in `homography_files` and choose a subset of these homographies according to `bit_index`. Refine this subset of homographies """ homography_files, bit_index = args def take_by_bitindex(list_, bits_as_int): indices = xrange(len(list_)-1, -1, -1) bool_bits = ( bool(bits_as_int & 2**i) for i in indices ) return [ entry for entry, bit in zip(list_, bool_bits) if bit ] homography_files = take_by_bitindex(homography_files, bit_index) hmodels = [ HomographyModel.load_from_file(f) for f in homography_files ] # # Deconstruct information in the HomographyModels into # a graph of nodes and constraints # graph = ConstraintGraph() itag_getter = lambda e: e.itag hmodels.sort(key=itag_getter) for itag, group in groupby(hmodels, key=itag_getter): group = list(group) homographies = [ hm.homography_at_center() for hm in group ] K = estimate_intrinsics_noskew(homographies) inode = IntrinsicsNode(*matrix_to_intrinsics(K), tag=itag) # For each HomographyModel in `group` construct an ExtrinsicsNode enode_tags = [ '%s/%s' % (itag, hm.etag) for hm in group ] E_matrices = ( get_extrinsics_from_homography(H, K) for H in homographies ) enodes = [ ExtrinsicsNode(*matrix_to_xyzrph(E), tag=tag) for E, tag in zip(E_matrices, enode_tags) ] # Instantiate constraints between each ExtrinsicsNode and the single IntrinsicsNode constraints = [ HomographyConstraint(hm, inode, enode) for hm, enode in zip(group, enodes) ] # Add nodes and constraints to graph graph.inodes[itag] = inode graph.enodes.update( (e.tag, e) for e in enodes ) graph.constraints.extend( constraints ) # # Optimize graph to reduce error in constraints # def objective(x): graph.state = x return graph.constraint_errors() x0 = graph.state result = root(objective, x0, method='lm', options={'factor': 0.1, 'col_deriv': 1}) graph.state = result.x return graph.istate
def main(): import sys from glob import iglob from itertools import groupby np.set_printoptions(precision=4, suppress=True) folder = sys.argv[1] saved_files = iglob(folder + '/pose?/*.lh0') hmodels = [HomographyModel.load_from_file(f) for f in saved_files] # # Deconstruct information in the HomographyModels into # a graph of nodes and constraints # graph = ConstraintGraph() # # Construct intrinsic nodes # itag_getter = lambda e: e.itag hmodels.sort(key=itag_getter) for itag, group in groupby(hmodels, key=itag_getter): homographies = [hm.homography_at_center() for hm in group] K = estimate_intrinsics_noskew(homographies) graph.inodes[itag] = IntrinsicsNode(*matrix_to_intrinsics(K), tag=itag) # # Construct extrinsic nodes # etag_getter = lambda e: e.etag hmodels.sort(key=etag_getter) for etag, group in groupby(hmodels, key=etag_getter): estimates = [] for hm in group: K = graph.inodes.get(hm.itag).to_matrix()[:, :3] E = get_extrinsics_from_homography(hm.homography_at_center(), K) estimates.append(matrix_to_xyzrph(E)) graph.enodes[etag] = ExtrinsicsNode(*np.mean(estimates, axis=0), tag=etag) print 'Graph' print '-----' print ' %d intrinsic nodes' % len(graph.inodes) print ' %d extrinsic nodes' % len(graph.enodes) print '' # # Connect nodes by constraints # for hm in hmodels: inode = graph.inodes[hm.itag] enode = graph.enodes[hm.etag] constraint = HomographyConstraint(hm, inode, enode) graph.constraints.append(constraint) rmse = np.sqrt(constraint.sq_unweighted_reprojection_errors().mean()) print ' %s %s rmse: %.2f' % (hm.etag, hm.itag, rmse) # # Optimize graph to reduce error in constraints # def print_graph_summary(title): print '\n' + title print '-' * len(title) print ' rmse: %.4f' % np.sqrt(graph.sq_pixel_errors().mean()) print ' rmaxse: %.4f' % np.sqrt(graph.sq_pixel_errors().max()) print '' for itag, inode in graph.inodes.iteritems(): print ' intrinsics@ ' + itag + " =", np.array(inode.to_tuple()) print ' extrinsics@ pose0 =', np.array( graph.enodes['pose0'].to_tuple()) def objective(x): graph.state = x return graph.constraint_errors() def optimize_graph(): x0 = graph.state print_graph_summary('Initial:') print '\nOptimizing graph ...' result = root(objective, x0, method='lm', options={ 'factor': 0.1, 'col_deriv': 1 }) print ' Success: ' + str(result.success) print ' %s' % result.message graph.state = result.x print_graph_summary('Final:') print '\n' print '=====================' print ' Optimization 1' print '=====================' print ' Optimizing all intrinsics and extrinisics' optimize_graph() # # Now optimize with just the constraints of # the poses required for estimating distortion # candidate_poses = set(sys.argv[2:]) candidate_constraints = (c for c in graph.constraints if isinstance(c, HomographyConstraint)) candidate_constraints = [ c for c in candidate_constraints if c.enode.tag in candidate_poses ] graph.constraints = candidate_constraints print '\n' print '=====================' print ' Optimization 2' print '=====================' print ' Optimizing candidate intrinsics (%d constraints)' % len( graph.constraints) optimize_graph() # # Write out the refined intrinsics and extrinsics # homography_constraints = (c for c in graph.constraints if isinstance(c, HomographyConstraint)) for constraint in homography_constraints: etag, itag = constraint.enode.tag, constraint.inode.tag K = constraint.inode.to_matrix() E = constraint.enode.to_matrix() H = K.dot(E) filename = '%s/%s/%s.lh0+' % (folder, etag, itag) with open(filename, 'w') as f: pickle.dump((K, E), f)
def main(): import sys from glob import iglob from itertools import groupby np.set_printoptions(precision=4, suppress=True) folder = sys.argv[1] saved_files = iglob(folder + '/*/*.lh0') hmodels = [ HomographyModel.load_from_file(f) for f in saved_files ] print '%d hmodels\n' % len(hmodels) # # Deconstruct information in the HomographyModels into # a graph of nodes and constraints # graph = ConstraintGraph() itag_getter = lambda e: e.itag hmodels.sort(key=itag_getter) for itag, group in groupby(hmodels, key=itag_getter): group = list(group) homographies = [ hm.homography_at_center() for hm in group ] K = estimate_intrinsics_noskew(homographies) inode = IntrinsicsNode(*matrix_to_intrinsics(K), tag=itag) # For each HomographyModel in `group` construct an ExtrinsicsNode enode_tags = [ '%s/%s' % (itag, hm.etag) for hm in group ] E_matrices = ( get_extrinsics_from_homography(H, K) for H in homographies ) enodes = [ ExtrinsicsNode(*matrix_to_xyzrph(E), tag=tag) for E, tag in zip(E_matrices, enode_tags) ] # Instantiate constraints between each ExtrinsicsNode and the single IntrinsicsNode constraints = [ HomographyConstraint(hm, inode, enode) for hm, enode in zip(group, enodes) ] # Leave out the worst two constraints if False: rmse = [ c.sq_unweighted_reprojection_errors().mean() for c in constraints ] inliner_idx = np.argsort(rmse)[:-2] enodes = [ enodes[i] for i in inliner_idx ] constraints = [ constraints[i] for i in inliner_idx ] # Add nodes and constraints to graph graph.inodes[itag] = inode graph.enodes.update( (e.tag, e) for e in enodes ) graph.constraints.extend( constraints ) print 'Graph' print '-----' print ' %d intrinsic nodes' % len(graph.inodes) print ' %d extrinsic nodes' % len(graph.enodes) print ' %d constraints' % len(graph.constraints) print '' for constraint in (c for c in graph.constraints if isinstance(c, HomographyConstraint)): rmse = np.sqrt(constraint.sq_unweighted_reprojection_errors().mean()) print ' %s rmse: %.2f' % (constraint.enode.tag, rmse) # # Optimize graph to reduce error in constraints # def print_graph_summary(title): print '\n' + title print '-'*len(title) print ' rmse: %.4f' % np.sqrt(graph.sq_pixel_errors().mean()) print ' rmaxse: %.4f' % np.sqrt(graph.sq_pixel_errors().max()) print '' for itag, inode in graph.inodes.iteritems(): print ' intrinsics@ ' + itag + " =", np.array(inode.to_tuple()) def objective(x): graph.state = x return graph.constraint_errors() def optimize_graph(): x0 = graph.state print_graph_summary('Initial:') print '\nOptimizing graph ...' result = root(objective, x0, method='lm', options={'factor': 0.1, 'col_deriv': 1}) print ' Success: ' + str(result.success) print ' %s' % result.message graph.state = result.x print_graph_summary('Final:') print '\n' print '=====================' print ' Optimization' print '=====================' optimize_graph() print ' ' for constraint in (c for c in graph.constraints if isinstance(c, HomographyConstraint)): if constraint.enode.tag.endswith("/pose0"): rmse = np.sqrt(constraint.sq_unweighted_reprojection_errors().mean()) print ' %s rmse: %.2f' % (constraint.enode.tag, rmse) # # Write out the refined intrinsics and extrinsics # homography_constraints = ( c for c in graph.constraints if isinstance(c, HomographyConstraint) ) for constraint in homography_constraints: etag, itag = constraint.enode.tag, constraint.inode.tag K = constraint.inode.to_matrix() E = constraint.enode.to_matrix() filename = '%s/%s.lh0+' % (folder, etag) with open(filename, 'w') as f: pickle.dump((K, E), f)
def main(): np.set_printoptions(precision=4, suppress=True) import sys homography_info = [ get_homography_estimate(f) for f in sys.argv[1:] ] # # Estimate intrinsics # from camera_math import estimate_intrinsics_noskew from camera_math import get_extrinsics_from_homography from camera_math import matrix_to_xyzrph, matrix_to_intrinsics K = estimate_intrinsics_noskew([ hinf.H for hinf in homography_info]) # # Setup factor graph # graph = ConstraintGraph() inode = IntrinsicsNode('in', *matrix_to_intrinsics(K)) graph.inodes['in'] = inode for i, hinf in enumerate(homography_info): E = get_extrinsics_from_homography(hinf.H, K) enode = ExtrinsicsNode('pose%d'%i, *matrix_to_xyzrph(E)) c = HomographyConstraint(hinf.corrs, hinf.imshape, inode, enode) graph.enodes['pose%d'%i] = enode graph.constraints.append(c) print 'Graph' print '-----' print ' %d intrinsic nodes' % len(graph.inodes) print ' %d extrinsic nodes' % len(graph.enodes) print ' %d constraints' % len(graph.constraints) print '' for constraint in (c for c in graph.constraints if isinstance(c, HomographyConstraint)): rmse = np.sqrt(constraint.sq_errors().mean()) print ' %s rmse: %.2f' % (constraint.enode.tag, rmse) # # Optimize graph to reduce error in constraints # def print_graph_summary(title): print '\n' + title print '-'*len(title) print ' rmse: %.4f' % np.sqrt(graph.sq_pixel_errors().mean()) print ' rmaxse: %.4f' % np.sqrt(graph.sq_pixel_errors().max()) print '' for itag, inode in graph.inodes.iteritems(): print ' intrinsics@ ' + itag + " =", np.array(inode.to_tuple()) def objective(x): graph.state = x return graph.constraint_errors() def optimize_graph(): x0 = graph.state print_graph_summary('Initial:') print '\nOptimizing graph ...' from scipy.optimize import root result = root(objective, x0, method='lm', options={'factor': 100, 'col_deriv': 1}) print ' Success: ' + str(result.success) print ' %s' % result.message graph.state = result.x print_graph_summary('Final:') print '\n' print '=====================' print ' Optimization' print '=====================' optimize_graph() import os.path folder = os.path.dirname(sys.argv[1]) import cPickle as pickle warp = ClassicLensWarp(inode, homography_info[0].imshape) with open(folder + '/classic.poly', 'w') as f: pickle.dump(warp, f)
def main(): import sys from glob import iglob from itertools import groupby np.set_printoptions(precision=4, suppress=True) folder = sys.argv[1] saved_files = iglob(folder + '/*/*.lh0') hmodels = [HomographyModel.load_from_file(f) for f in saved_files] print '%d hmodels\n' % len(hmodels) # # Deconstruct information in the HomographyModels into # a graph of nodes and constraints # graph = ConstraintGraph() itag_getter = lambda e: e.itag hmodels.sort(key=itag_getter) for itag, group in groupby(hmodels, key=itag_getter): group = list(group) homographies = [hm.homography_at_center() for hm in group] K = estimate_intrinsics_noskew(homographies) inode = IntrinsicsNode(*matrix_to_intrinsics(K), tag=itag) # For each HomographyModel in `group` construct an ExtrinsicsNode enode_tags = ['%s/%s' % (itag, hm.etag) for hm in group] E_matrices = (get_extrinsics_from_homography(H, K) for H in homographies) enodes = [ ExtrinsicsNode(*matrix_to_xyzrph(E), tag=tag) for E, tag in zip(E_matrices, enode_tags) ] # Instantiate constraints between each ExtrinsicsNode and the single IntrinsicsNode constraints = [ HomographyConstraint(hm, inode, enode) for hm, enode in zip(group, enodes) ] # Leave out the worst two constraints if False: rmse = [ c.sq_unweighted_reprojection_errors().mean() for c in constraints ] inliner_idx = np.argsort(rmse)[:-2] enodes = [enodes[i] for i in inliner_idx] constraints = [constraints[i] for i in inliner_idx] # Add nodes and constraints to graph graph.inodes[itag] = inode graph.enodes.update((e.tag, e) for e in enodes) graph.constraints.extend(constraints) print 'Graph' print '-----' print ' %d intrinsic nodes' % len(graph.inodes) print ' %d extrinsic nodes' % len(graph.enodes) print ' %d constraints' % len(graph.constraints) print '' for constraint in (c for c in graph.constraints if isinstance(c, HomographyConstraint)): rmse = np.sqrt(constraint.sq_unweighted_reprojection_errors().mean()) print ' %s rmse: %.2f' % (constraint.enode.tag, rmse) # # Optimize graph to reduce error in constraints # def print_graph_summary(title): print '\n' + title print '-' * len(title) print ' rmse: %.4f' % np.sqrt(graph.sq_pixel_errors().mean()) print ' rmaxse: %.4f' % np.sqrt(graph.sq_pixel_errors().max()) print '' for itag, inode in graph.inodes.iteritems(): print ' intrinsics@ ' + itag + " =", np.array(inode.to_tuple()) def objective(x): graph.state = x return graph.constraint_errors() def optimize_graph(): x0 = graph.state print_graph_summary('Initial:') print '\nOptimizing graph ...' result = root(objective, x0, method='lm', options={ 'factor': 0.1, 'col_deriv': 1 }) print ' Success: ' + str(result.success) print ' %s' % result.message graph.state = result.x print_graph_summary('Final:') print '\n' print '=====================' print ' Optimization' print '=====================' optimize_graph() print ' ' for constraint in (c for c in graph.constraints if isinstance(c, HomographyConstraint)): if constraint.enode.tag.endswith("/pose0"): rmse = np.sqrt( constraint.sq_unweighted_reprojection_errors().mean()) print ' %s rmse: %.2f' % (constraint.enode.tag, rmse) # # Write out the refined intrinsics and extrinsics # homography_constraints = (c for c in graph.constraints if isinstance(c, HomographyConstraint)) for constraint in homography_constraints: etag, itag = constraint.enode.tag, constraint.inode.tag K = constraint.inode.to_matrix() E = constraint.enode.to_matrix() filename = '%s/%s.lh0+' % (folder, etag) with open(filename, 'w') as f: pickle.dump((K, E), f)
def main(): import sys from glob import iglob from itertools import groupby np.set_printoptions(precision=4, suppress=True) folder = sys.argv[1] saved_files = iglob(folder + '/pose?/*.lh0') hmodels = [ HomographyModel.load_from_file(f) for f in saved_files ] # # Deconstruct information in the HomographyModels into # a graph of nodes and constraints # graph = ConstraintGraph() # # Construct intrinsic nodes # itag_getter = lambda e: e.itag hmodels.sort(key=itag_getter) for itag, group in groupby(hmodels, key=itag_getter): homographies = [ hm.homography_at_center() for hm in group ] K = estimate_intrinsics_noskew(homographies) graph.inodes[itag] = IntrinsicsNode(*matrix_to_intrinsics(K), tag=itag) # # Construct extrinsic nodes # etag_getter = lambda e: e.etag hmodels.sort(key=etag_getter) for etag, group in groupby(hmodels, key=etag_getter): estimates = [] for hm in group: K = graph.inodes.get(hm.itag).to_matrix()[:,:3] E = get_extrinsics_from_homography(hm.homography_at_center(), K) estimates.append(matrix_to_xyzrph(E)) graph.enodes[etag] = ExtrinsicsNode(*np.mean(estimates, axis=0), tag=etag) print 'Graph' print '-----' print ' %d intrinsic nodes' % len(graph.inodes) print ' %d extrinsic nodes' % len(graph.enodes) print '' # # Connect nodes by constraints # for hm in hmodels: inode = graph.inodes[hm.itag] enode = graph.enodes[hm.etag] constraint = HomographyConstraint(hm, inode, enode) graph.constraints.append(constraint) rmse = np.sqrt(constraint.sq_unweighted_reprojection_errors().mean()) print ' %s %s rmse: %.2f' % (hm.etag, hm.itag, rmse) # # Optimize graph to reduce error in constraints # def print_graph_summary(title): print '\n' + title print '-'*len(title) print ' rmse: %.4f' % np.sqrt(graph.sq_pixel_errors().mean()) print ' rmaxse: %.4f' % np.sqrt(graph.sq_pixel_errors().max()) print '' for itag, inode in graph.inodes.iteritems(): print ' intrinsics@ ' + itag + " =", np.array(inode.to_tuple()) print ' extrinsics@ pose0 =', np.array(graph.enodes['pose0'].to_tuple()) def objective(x): graph.state = x return graph.constraint_errors() def optimize_graph(): x0 = graph.state print_graph_summary('Initial:') print '\nOptimizing graph ...' result = root(objective, x0, method='lm', options={'factor': 0.1, 'col_deriv': 1}) print ' Success: ' + str(result.success) print ' %s' % result.message graph.state = result.x print_graph_summary('Final:') print '\n' print '=====================' print ' Optimization 1' print '=====================' print ' Optimizing all intrinsics and extrinisics' optimize_graph() # # Now optimize with just the constraints of # the poses required for estimating distortion # candidate_poses = set(sys.argv[2:]) candidate_constraints = ( c for c in graph.constraints if isinstance(c, HomographyConstraint) ) candidate_constraints = [ c for c in candidate_constraints if c.enode.tag in candidate_poses ] graph.constraints = candidate_constraints print '\n' print '=====================' print ' Optimization 2' print '=====================' print ' Optimizing candidate intrinsics (%d constraints)' % len(graph.constraints) optimize_graph() # # Write out the refined intrinsics and extrinsics # homography_constraints = ( c for c in graph.constraints if isinstance(c, HomographyConstraint) ) for constraint in homography_constraints: etag, itag = constraint.enode.tag, constraint.inode.tag K = constraint.inode.to_matrix() E = constraint.enode.to_matrix() H = K.dot(E) filename = '%s/%s/%s.lh0+' % (folder, etag, itag) with open(filename, 'w') as f: pickle.dump((K, E), f)