def test_parameterSet(self): cam = ct.Camera(ct.RectilinearProjection(), ct.SpatialOrientation()) cam.defaults.elevation_m = 99 assert cam.elevation_m == 99 assert cam.defaults.elevation_m == 99 cam.elevation_m = 10 assert cam.elevation_m == 10 assert cam.defaults.elevation_m == 99 cam.elevation_m = None assert cam.elevation_m == 99 assert cam.defaults.elevation_m == 99 # test if the parameter sets are liked properly cam.orientation.elevation_m = 900 assert cam.elevation_m == 900 cam.elevation_m = 800 assert cam.orientation.elevation_m == 800 # test non parameter cam.foo = 99 assert cam.foo == 99 cam.defaults.foo = 99 assert cam.defaults.foo == 99 self.assertRaises(AttributeError, lambda: cam.bla) self.assertRaises(AttributeError, lambda: cam.parameters.bla) self.assertRaises(AttributeError, lambda: cam.projection.bla) self.assertRaises(AttributeError, lambda: cam.orientation.bla) self.assertRaises(AttributeError, lambda: cam.defaults.bla)
def startDemonstratorGUI(): cam = ct.Camera(ct.RectilinearProjection(focallength_px=3860, image=[4608, 2592])) app = QtWidgets.QApplication(sys.argv) window = Window(cam, Scene9Cubes(cam)) window.show() app.exec_()
def get_camera_params(project_path, location, display=False): """Compute camera parameters using yolo inputs and save it""" # Paths yolo_folder = project_path + 'models/yolo_coco/' image_folder = project_path + 'video_scraping/' + location + '/' # Get one frame for initialization frame = plt.imread(image_folder + sorted(os.listdir(image_folder))[-1]) # Intrinsic camera parameters focal = 6.2 # in mm sensor_size = (6.17, 4.55) # in mm frame_size = (frame.shape[1], frame.shape[0]) # (width, height) in pixel # Initialize the camera camera = ct.Camera( ct.RectilinearProjection(focallength_mm=focal, sensor=sensor_size, image=frame_size)) # Calibrate using people detection feet, heads = yolo_collection(yolo_folder, image_folder) camera.addObjectHeightInformation( feet, heads, 1.7, 0.3) # Person average height in meter + std information # Fitting camera parameters trace = camera.metropolis( [ # ct.FitParameter("heading_deg", lower=-180, upper=180, value=0), # ct.FitParameter("roll_deg", lower=-180, upper=180, value=0), ct.FitParameter("elevation_m", lower=0, upper=100, value=5), ct.FitParameter("tilt_deg", lower=0, upper=180, value=45) ], iterations=1e4) # Save camera parameters camera.save(project_path + 'camera_params/' + location + '_camera_params.json') if display: # Display calibration information camera.plotTrace() plt.tight_layout() plt.show() plt.figure('Calibration information', figsize=(15, 10)) plt.subplot(1, 2, 1) camera.plotFitInformation(frame) plt.legend() plt.subplot(1, 2, 2) camera.getTopViewOfImage(frame, [-10, 10, 0, 20], do_plot=True) plt.xlabel("x position in m") plt.ylabel("y position in m") plt.show()
def test_init_cam(self): # intrinsic camera parameters f = 6.2 sensor_size = (6.17, 4.55) image_size = (3264, 2448) # initialize the camera cam = ct.Camera( ct.RectilinearProjection(focallength_mm=f, image_width_px=image_size[1], image_height_px=image_size[0], sensor_width_mm=sensor_size[1], sensor_height_mm=sensor_size[0]), ct.SpatialOrientation())
def test_fitCamParametersFromObjects(self): # setup the camera im = np.ones((2592, 4608, 3)) camera = ct.Camera( ct.RectilinearProjection(focallength_px=3863.64, image=im)) feet = np.array([[1968.73191418, 2291.89125757], [1650.27266115, 2189.75370951], [1234.42623164, 2300.56639535], [927.4853119, 2098.87724083], [3200.40162013, 1846.79042709], [3385.32781138, 1690.86859965], [2366.55011031, 1446.05084045], [1785.68269333, 1399.83787022], [889.30386193, 1508.92532749], [4107.26569943, 2268.17045783], [4271.86353701, 1889.93651518], [4007.93773879, 1615.08452509], [2755.63028039, 1976.00345458], [3356.54352228, 2220.47263494], [407.60113016, 1933.74694958], [1192.78987735, 1811.07247163], [1622.31086201, 1707.77946355], [2416.53943619, 1775.68148688], [2056.81514201, 1946.4146027], [2945.35225814, 1617.28314118], [1018.41322935, 1499.63957113], [1224.2470045, 1509.87120351], [1591.81599888, 1532.33339856], [1701.6226147, 1481.58276189], [1954.61833888, 1405.49985098], [2112.99329583, 1485.54970652], [2523.54106057, 1534.87590467], [2911.95610793, 1448.87104305], [3330.54617013, 1551.64321531], [2418.21276457, 1541.28499777], [1771.1651859, 1792.70568482], [1859.30409241, 1904.01744759], [2805.02878512, 1881.00463747], [3138.67003071, 1821.05082989], [3355.45215983, 1910.47345815], [734.28038607, 1815.69614796], [978.36733356, 1896.36507827], [1350.63202232, 1979.38798787], [3650.89052382, 1901.06620751], [3555.47087822, 2332.50027861], [865.71688784, 1662.27834394], [1115.89438493, 1664.09341647], [1558.93825646, 1671.02167477], [1783.86089289, 1679.33599881], [2491.01579305, 1707.84219953], [3531.26955813, 1729.08486338], [3539.6318973, 1776.5766387], [4150.36451427, 1840.90968707], [2112.48684812, 1714.78834459], [2234.65444134, 1756.17059266]]) heads = np.array([[1968.45971142, 2238.81171866], [1650.27266115, 2142.33767714], [1233.79698528, 2244.77321846], [927.4853119, 2052.2539967], [3199.94718145, 1803.46727222], [3385.32781138, 1662.23146061], [2366.63609066, 1423.52398752], [1785.68269333, 1380.17615549], [889.30386193, 1484.13026407], [4107.73533808, 2212.98791584], [4271.86353701, 1852.85753597], [4007.93773879, 1586.36656606], [2755.89171994, 1938.22544024], [3355.91105749, 2162.91833832], [407.60113016, 1893.63300333], [1191.97371829, 1777.60995028], [1622.11915337, 1678.63975025], [2416.31761434, 1743.29549618], [2056.67597009, 1910.09072955], [2945.35225814, 1587.22557592], [1018.69818061, 1476.70099517], [1224.55272475, 1490.30510731], [1591.81599888, 1510.72308329], [1701.45016126, 1460.88834824], [1954.734384, 1385.54008964], [2113.14023137, 1465.41953732], [2523.54106057, 1512.33125811], [2912.08384338, 1428.56110628], [3330.40769371, 1527.40984208], [2418.21276457, 1517.88006678], [1770.94524662, 1761.25436746], [1859.30409241, 1867.88794433], [2804.69006305, 1845.10009734], [3138.33130864, 1788.53351052], [3355.45215983, 1873.21402971], [734.49504829, 1780.27688131], [978.1022294, 1853.9484135], [1350.32991656, 1938.60371039], [3650.89052382, 1863.97713098], [3556.44897343, 2278.37901052], [865.41437575, 1633.53969555], [1115.59187284, 1640.49747358], [1558.06918395, 1647.12218082], [1783.86089289, 1652.74740383], [2491.20950909, 1677.42878081], [3531.11177814, 1696.89774656], [3539.47411732, 1745.49398176], [4150.01023142, 1803.35570469], [2112.84669376, 1684.92115685], [2234.65444134, 1724.86402238]]) camera.addObjectHeightInformation(feet, heads, 0.75, 0.03) camera.addObjectHeightInformation(feet[0], heads[0], 0.75, 0.03) camera.addObjectHeightInformation(feet[:2], heads[:2], [0.75, 0.7], 0.03) horizon = np.array([[418.2195998, 880.253216], [3062.54424509, 820.94125636]]) camera.addHorizonInformation(horizon, uncertainty=10) camera.addHorizonInformation(horizon[0], uncertainty=10) camera.setGPSpos("66°39'53.4\"S 140°00'34.8\"") gps = ct.gpsFromString("66°39'53.4\"S 140°00'34.8\"") camera.setGPSpos(gps) camera.setGPSpos(gps[0], gps[1], 0) lm_points_px = np.array([[2091.300935, 892.072126], [2935.904577, 824.364956]]) lm_points_gps = ct.gpsFromString([ ("66°39'56.12862''S 140°01'20.39562''", 13.769), ("66°39'58.73922''S 140°01'09.55709''", 21.143) ]) lm_points_space = camera.spaceFromGPS(lm_points_gps) camera.addLandmarkInformation(lm_points_px, lm_points_space, [3, 3, 5]) camera.addLandmarkInformation(lm_points_px[0], lm_points_space[0], [3, 3, 5]) trace = camera.metropolis([ ct.FitParameter("elevation_m", lower=0, upper=100, value=20), ct.FitParameter("tilt_deg", lower=0, upper=180, value=80), ct.FitParameter("heading_deg", lower=-180, upper=180, value=-77), ct.FitParameter("roll_deg", lower=-180, upper=180, value=0) ], iterations=1e3) print(trace) camera.fit([ ct.FitParameter("elevation_m", lower=0, upper=100, value=20), ct.FitParameter("tilt_deg", lower=0, upper=180, value=80), ct.FitParameter("heading_deg", lower=-180, upper=180, value=-77), ct.FitParameter("roll_deg", lower=-180, upper=180, value=0) ], iterations=1e3) """ camera.fridge([ ct.FitParameter("elevation_m", lower=0, upper=100, value=20), ct.FitParameter("tilt_deg", lower=0, upper=180, value=80), ct.FitParameter("heading_deg", lower=-180, upper=180, value=-77), ct.FitParameter("roll_deg", lower=-180, upper=180, value=0) ], iterations=1e2) """ camera.plotTrace() camera.plotFitInformation(im)
def updateCameraParameters(self): """ update camera dictionary for calculation - uses potentially user modified data from gui """ # update current cam parameters self.cam = dotdict() self.cam.fov_h_deg = getFloat(self.leFOV_horizontal.text()) self.cam.fov_v_deg = getFloat(self.leFOV_vertical.text()) self.cam.sensor_w_mm = getFloat(self.leSensor_width.text()) self.cam.sensor_h_mm = getFloat(self.leSensor_height.text()) self.cam.focallength_mm = getFloat(self.leFocallength.text()) self.cam.img_w_px = getInteger(self.leImage_width.text()) self.cam.img_h_px = getInteger(self.leImage_height.text()) self.cam.center_x_px = self.cam.img_w_px / 2. + getFloat( self.leOffsetX.text()) self.cam.center_y_px = self.cam.img_h_px / 2. + getFloat( self.leOffsetY.text()) self.cam.heading_deg = getFloat(self.leCamPan.text()) self.cam.tilt_deg = getFloat(self.leCamTilt.text()) self.cam.roll_deg = getFloat(self.leCamRoll.text()) self.cam.elevation_m = getFloat(self.leCamElevation.text()) self.cam.pos_x_m = getFloat(self.leCamPosX.text()) self.cam.pos_y_m = getFloat(self.leCamPosY.text()) self.cam.projection = self.cbProjection.itemText( self.cbProjection.currentIndex()) self.cam.gps_lat = getFloat(self.leCamLat.text()) self.cam.gps_lon = getFloat(self.leCamLon.text()) if self.cam.sensor_h_mm is None or self.cam.sensor_w_mm is None: self.calcSensorDimensionsFromFOV() # save parameters as options to DB self.setOption('DM_focallength_mm', self.cam.focallength_mm) self.setOption('DM_fov_h_deg', self.cam.fov_h_deg) self.setOption('DM_fov_v_deg', self.cam.fov_v_deg) self.setOption('DM_sensor_w_mm', self.cam.sensor_w_mm) self.setOption('DM_sensor_h_mm', self.cam.sensor_h_mm) self.setOption('DM_img_w_px', self.cam.img_w_px) self.setOption('DM_img_h_px', self.cam.img_h_px) self.setOption('DM_offset_x_px', getFloat(self.leOffsetX.text())) self.setOption('DM_offset_y_px', getFloat(self.leOffsetY.text())) print("Camera:") print(json.dumps(self.cam, indent=4, sort_keys=True)) self.position = dotdict() self.position.cam_elevation = getFloat(self.leCamElevation.text()) self.position.plane_elevation = getFloat(self.lePlaneElevation.text()) # save parameters to options self.setOption('DM_cam_elevation', self.position.cam_elevation) self.setOption('DM_plane_elevation', self.position.plane_elevation) print("Position:") print(json.dumps(self.position, indent=4, sort_keys=True)) print(self.cam) # update camera parameters # self.camera = ct.CameraTransform(self.cam.focallength_mm, [self.cam.sensor_w_mm, self.cam.sensor_h_mm],[self.cam.img_w_px, self.cam.img_h_px]) orientation = ct.SpatialOrientation(heading_deg=self.cam.heading_deg, tilt_deg=self.cam.tilt_deg, roll_deg=self.cam.roll_deg, elevation_m=self.cam.elevation_m, pos_x_m=self.cam.pos_x_m, pos_y_m=self.cam.pos_y_m) if self.cam.projection == "Cylindrical": projection = ct.CylindricalProjection( focallength_mm=self.cam.focallength_mm, image_width_px=self.cam.img_w_px, image_height_px=self.cam.img_h_px, sensor_width_mm=self.cam.sensor_w_mm, sensor_height_mm=self.cam.sensor_h_mm, center_x_px=self.cam.center_x_px, center_y_px=self.cam.center_y_px) elif self.cam.projection == "Equirectangular": projection = ct.EquirectangularProjection( focallength_mm=self.cam.focallength_mm, image_width_px=self.cam.img_w_px, image_height_px=self.cam.img_h_px, sensor_width_mm=self.cam.sensor_w_mm, sensor_height_mm=self.cam.sensor_h_mm, center_x_px=self.cam.center_x_px, center_y_px=self.cam.center_y_px) else: # default to rectilinear projection print("Defaulting to rectiliniear") projection = ct.RectilinearProjection( focallength_mm=self.cam.focallength_mm, image_width_px=self.cam.img_w_px, image_height_px=self.cam.img_h_px, sensor_width_mm=self.cam.sensor_w_mm, sensor_height_mm=self.cam.sensor_h_mm, center_x_px=self.cam.center_x_px, center_y_px=self.cam.center_y_px) self.camera = ct.Camera(orientation=orientation, projection=projection) self.camera.setGPSpos(lat=self.cam.gps_lat, lon=self.cam.gps_lon, elevation=self.cam.elevation_m)
def __init__(self, camera_params): self.bridge = CvBridge() for camera_id in range(camera_params['n_cameras']): setattr(self, 'last_image_%02i' % (camera_id, ), [[None, None, None]]) self.last_model_states = ModelStates() self.spawned_objects = [] # Camera IDs and corresponding variables holding images self.camera_type = camera_params['camera_type'] self.update_rate = camera_params['update_rate'] self.image_dims = camera_params['camera_resolution'] + (3, ) self.camera_dict = {'%02i' % (camera_id,): getattr(self, 'last_image_%02i'\ % (camera_id,)) for camera_id in range(camera_params['n_cameras'])} # ROS Subscribers, Publishers, Services for camera_id in range(camera_params['n_cameras']): if self.camera_type in ['rgb', 'both']: img_callback_rgb = self.__image_callback_wrapper( camera_id, 'rgb') topic_name_rgb = '/robot/camera_rgb_%02i' % (camera_id, ) setattr( self, '__image_rgb_%02i_sub' % (camera_id, ), rospy.Subscriber(topic_name_rgb, Image, img_callback_rgb, queue_size=1)) if self.camera_type in ['dvs', 'both']: img_callback_dvs = self.__image_callback_wrapper( camera_id, 'dvs') topic_name_dvs = '/robot/camera_dvs_%02i/events' % ( camera_id, ) setattr( self, '__image_dvs_%02i_sub' % (camera_id, ), rospy.Subscriber(topic_name_dvs, EventArray, img_callback_dvs, queue_size=1)) self.__set_model_state_pub = rospy.Publisher('/gazebo/set_model_state', ModelState, queue_size=1) rospy.wait_for_service('gazebo/get_model_state', 10.0) self.__get_model_state_srv = rospy.ServiceProxy( 'gazebo/get_model_state', GetModelState) # 3D voxel to 2D camera pixel projection parameters (useful for segmentation dataset) self.cam_transform = [] for camera_id in range(camera_params['n_cameras']): cam_pose = self.get_object_pose('camera_%02i' % (camera_id)) cam_pos = cam_pose.position cam_ori = cam_pose.orientation roll, pitch, yaw = euler_from_quaternion( [cam_ori.x, cam_ori.y, cam_ori.z, cam_ori.w]) (roll, pitch, yaw) = (angle_in_rad * 180 / np.pi for angle_in_rad in (roll, pitch, yaw)) cam_projection = ct.RectilinearProjection( focallength_px=camera_params['focal_length_px'], image=camera_params['camera_resolution']) cam_orientation = ct.SpatialOrientation(pos_x_m=cam_pos.x, pos_y_m=cam_pos.y, elevation_m=cam_pos.z, roll_deg=roll, tilt_deg=90 - pitch, heading_deg=90 - yaw) cam_lens = ct.BrownLensDistortion(k1=0.0, k2=0.0, k3=0.0, projection=cam_projection) self.cam_transform.append( ct.Camera(projection=cam_projection, orientation=cam_orientation, lens=cam_lens)) rospy.init_node('cdp4_data_collection') rospy.wait_for_service('/gazebo/get_world_properties') self.__physics_state = rospy.ServiceProxy( '/gazebo/get_world_properties', GetWorldProperties) while self.__physics_state().sim_time < 2: print('Waiting for simulation to be started') rospy.sleep(2) self.__path_to_models = os.getenv('HOME') + '/.gazebo/models/' rospy.wait_for_service('gazebo/set_model_state', 10.0) self.__set_model_state_srv = rospy.ServiceProxy( 'gazebo/set_model_state', SetModelState) rospy.wait_for_service('gazebo/spawn_sdf_entity') self.__spawn_model_srv = rospy.ServiceProxy('/gazebo/spawn_sdf_entity', SpawnEntity) rospy.wait_for_service('gazebo/set_visual_properties') self.__change_color_srv = rospy.ServiceProxy( 'gazebo/set_visual_properties', SetVisualProperties)
def __init__(self): QtWidgets.QWidget.__init__(self) # the camera self.camera = ct.Camera(ct.RectilinearProjection(), lens=ct.BrownLensDistortion()) # the list of loaded images self.images = [] # widget layout and elements self.setMinimumWidth(1300) self.setMinimumHeight(400) self.setWindowTitle("Camera Calibrator") # add the main layout main_layout = QtWidgets.QHBoxLayout(self) self.setLayout(main_layout) """ the left pane with the image list """ layout = QtWidgets.QVBoxLayout(self) main_layout.addLayout(layout) # the table self.tableWidget = MyQTable() layout.addWidget(self.tableWidget) self.tableWidget.itemSelectionChanged.connect(self.imageSelected) self.tableWidget.cellDoubleClicked.connect(self.imageDoubleClicked) self.tableWidget.setColumnCount(3) self.tableWidget.setHorizontalHeaderLabels(["File", "Processed", "Use"]) self.tableWidget.setMinimumWidth(350) # the button layout self.button_layout = QtWidgets.QHBoxLayout() layout.addLayout(self.button_layout) # the batch loader self.input_filename = QtShortCuts.QInputFilename(self.button_layout, None, os.getcwd(), button_text="Add Images", file_type="Images (*.jpg *.png)", existing=True, just_button=True) self.input_filename.valueChanged.connect(self.loadBatch) # clear button self.button_clear = QtWidgets.QPushButton("Clear Images") self.button_clear.clicked.connect(self.clearImages) self.button_layout.addWidget(self.button_clear) # process button self.button_start = QtWidgets.QPushButton("Process") self.button_start.clicked.connect(self.processImages) self.button_layout.addWidget(self.button_start) """ the middle pane with the image display """ layout = QtWidgets.QVBoxLayout(self) main_layout.addLayout(layout) # view/scene setup self.view = QExtendedGraphicsView(dropTarget=self) layout.addWidget(self.view) self.origin = self.view.origin self.preview_pixMapItem = QtWidgets.QGraphicsPixmapItem(self.origin) self.view2 = QExtendedGraphicsView(dropTarget=self) layout.addWidget(self.view2) self.origin2 = self.view2.origin self.preview_pixMapItem2 = QtWidgets.QGraphicsPixmapItem(self.origin2) self.input_display_undistorted = QtShortCuts.QInputBool(layout, "Display Corrected (D)", True) self.input_display_undistorted.valueChanged.connect(self.displayImage) self.progessBar = QtWidgets.QProgressBar() layout.addWidget(self.progessBar) """ the right pane with the fit data """ layout = QtWidgets.QVBoxLayout(self) main_layout.addLayout(layout) # calibration flags self.input_fix_center = QtShortCuts.QInputBool(layout, "Fit Center") self.input_fix_aspect = QtShortCuts.QInputBool(layout, "Fit Aspect Ratio") self.input_fix_k1 = QtShortCuts.QInputBool(layout, "Fit K1", True) self.input_fix_k2 = QtShortCuts.QInputBool(layout, "Fit K2", True) self.input_fix_k3 = QtShortCuts.QInputBool(layout, "Fit K3", True) # start calibration button self.button_fit = QtWidgets.QPushButton("Fit Calibration") self.button_fit.clicked.connect(self.fitCalibration) layout.addWidget(self.button_fit) # a label to display the results self.calibration_result = QtWidgets.QLabel() layout.addWidget(self.calibration_result) # a strech layout.addStretch() # the plot of the result self.plot = QtShortCuts.MatplotlibWidget() layout.addWidget(self.plot) # the button layout self.button_layout2 = QtWidgets.QHBoxLayout() layout.addLayout(self.button_layout2) # save button self.button_save = QtShortCuts.QInputFilename(self.button_layout2, None, os.getcwd(), button_text="Save Calibration", file_type="Text File (*.txt)", existing=False, just_button=True) self.button_save.valueChanged.connect(self.saveCalibration) self.button_save.setDisabled(True) # load button self.button_load = QtShortCuts.QInputFilename(self.button_layout2, None, os.getcwd(), button_text="Load Calibration", file_type="Text File (*.txt)", existing=True, just_button=True) self.button_load.valueChanged.connect(self.loadCalibration)