Exemple #1
0
filepath='/air/incoming/sylvania/2015/'
#filepath='/Users/jthom/Documents/data/sylvania/2012/'

# remove existing biomet files from 
#dellist = glob(filepath + '*biomet.txt')
#for fn in dellist:
    #os.remove(fn)


filesin=glob(filepath + '/Sylvania_met_data*.dat')
timelist=[]
datalist=[]
for fn in filesin:
    datefilenameIn=datetime.strptime(fn,filepath + 'Sylvania_met_data_%Y_%m_%d_%H%M.dat')
    print fn
    data=toa5head(fn)

    timelist=[]
    datalist=[]
    for i in range(len(data)):
        timelist.append(data[i][0]) 
        datalist.append(data[i][1]) 

# convert the long wave data to include the sensor body temperature adjustment
    for i in range(len(data)):
        datalist[i]['IR01Dn_Avg'] = datalist[i]['IR01Dn_Avg'] + 5.67e-8 * (datalist[i]['TC_Avg'] + 273.15) ** 4  
        datalist[i]['IR01Up_Avg'] = datalist[i]['IR01Up_Avg'] + 5.67e-8 * (datalist[i]['TC_Avg'] + 273.15) ** 4  

    if datefilenameIn < date1:
        keystoprint=keystoprint1
    elif datefilenameIn >= date2:
Exemple #2
0
files.extend(glob(yesterdaydir + '*/Profiler_' + ft + '*.dat'))
files.extend(glob(todaydir + '*/Profiler_' + ft + '.dat'))
# metdata table
#metdatafiles.extend(glob(yesterdaydir + '*/Profiler_metdata*.dat'))
#metdatafiles.extend(glob(todaydir + '*/Profiler_metdata*.dat'))
# oldsensors table
#oldsensorsfiles.extend(glob(yesterdaydir + '*/Profiler_oldsensors*.dat'))
#oldsensorsfiles.extend(glob(todaydir + '*/Profiler_oldsensors*.dat'))
# profileDiag table
#profileDiagfiles.extend(glob(yesterdaydir + '*/Profiler_profileDiag*.dat'))
#profileDiagfiles.extend(glob(todaydir + '*/Profiler_profileDiag*.dat'))

# loop through the files and read in the data
for filein in fastfiles:
    #print filein
    filedata = toa5head(filein)
    data.extend(filedata)
# get the keys for the data stored in the dictionaries
datakeys = data[0][1].keys()
# make a list of list to put the data in before tranferring it to a numpy array
datalist = [[] for i in range(len(datakeys))]

#  make a list of all of the datetime objects
for i in range(len(data)):
    datatimelist.append(data[i][0])
# put the data from each dictionary into a list of lists
for j in datakeys:
    for i in range(len(data)):
        datalist[datakeys.index(j)].append(data[i][1].get(j))
# put the data into a numpy array
dataarray = np.array(datalist, dtype='d')
Exemple #3
0
headtitles = timetitle + ',' + ','.join(titlelist) + '\n'
headunits = timeunits + ',' + ','.join(unitslist) + '\n'

#filepath='/Users/jthom/Documents/data/LostCreek/'
filepath = '/air/incoming/LostCreek/'
# find dates to process
#dates=datetime.now() - timedelta(days=1)
# actually, I need to process todays date. UTC has already flipped to the next day.
dates = datetime.now()
datestr = dates.strftime('%Y%m%d')

filesin = glob(filepath + datestr + '/*metvalues*')
timelist = []
datalist = []
for fn in filesin:
    data = toa5head(fn)
    for i in range(len(data)):
        timelist.append(data[i][0])
        datalist.append(data[i][1])
timelistindx = sorted(range(len(timelist)), key=lambda k: timelist[k])

datafrmt = []
printstr = []
for i in timelistindx:
    for j in keystoprint:
        datafrmt.append('%.2f' % datalist[i][j])
#    timstr.append(timelist[i].strftime('%Y-%m-%d %H%M'))
    printstr.append(timelist[i].strftime('%Y-%m-%d %H%M') + ',' +
                    ','.join(datafrmt) + '\n')
    datafrmt = []
Exemple #4
0
#create directories to look in and make a list of files to read
yesterdaydir = datadir + yesterday.strftime('%Y_%m/%d/*/') 
todaydir = datadir + currenttime.strftime('%Y_%m/%d/*/') 
fastfiles.extend(glob(yesterdaydir + logger + '_fast_*.dat'))
fastfiles.extend(glob(todaydir + logger + '_fast_*.dat'))
slowfiles.extend(glob(yesterdaydir + logger + '_slow*.dat'))
slowfiles.extend(glob(todaydir + logger + '_slow*.dat'))

# initialize the lists for storing the data
fast = []
slow = []
fasttimelist = []
slowtimelist = []
# loop through the files and read in the data
for filein in fastfiles:
   filedata = toa5head(filein)   
   fast.extend(filedata)
for filein in slowfiles:
   filedata = toa5head(filein)   
   slow.extend(filedata)
# get the keys for the data stored in the dictionaries
fastkeys = fast[0][1].keys()
slowkeys = slow[0][1].keys()
# make a list of list to put the data in before tranferring it to a numpy array
fastlist = [[] for i in range(len(fastkeys))]
slowlist = [[] for i in range(len(slowkeys))]
#  make a list of all of the datetime objects
for i in range(len(fast)):
    fasttimelist.append(fast[i][0])
for i in range(len(slow)):
    slowtimelist.append(slow[i][0])
Exemple #5
0
files.extend(glob(yesterdaydir + '/*/Profiler_' + ft + '*.dat'))
files.extend(glob(todaydir + '/*/Profiler_' + ft + '*.dat'))
# metdata table
#metdatafiles.extend(glob(yesterdaydir + '*/Profiler_metdata*.dat'))
#metdatafiles.extend(glob(todaydir + '*/Profiler_metdata*.dat'))
# oldsensors table
#oldsensorsfiles.extend(glob(yesterdaydir + '*/Profiler_oldsensors*.dat'))
#oldsensorsfiles.extend(glob(todaydir + '*/Profiler_oldsensors*.dat'))
# profileDiag table
#profileDiagfiles.extend(glob(yesterdaydir + '*/Profiler_profileDiag*.dat'))
#profileDiagfiles.extend(glob(todaydir + '*/Profiler_profileDiag*.dat'))

# loop through the files and read in the data
for filein in files:
    #print filein
    datain = toa5head(filein)
    data.extend(datain)
# get the keys for the data stored in the dictionaries
datakeys = data[0][1].keys()
# make a list of list to put the data in before tranferring it to a numpy array
datalist = [[] for i in range(len(datakeys))]

#  make a list of all of the datetime objects
for i in range(len(data)):
    datatimelist.append(data[i][0])
# put the data from each dictionary into a list of lists
for j in datakeys:
    for i in range(len(data)):
        datalist[datakeys.index(j)].append(data[i][1].get(j))
# put the data into a numpy array
dataarray = np.array(datalist, dtype='d')
Exemple #6
0
data = []
datatimelist = []

#create directories to look in and make a list of files to read
yesterdaydir = datadir + yesterday.strftime('%Y%m%d')
todaydir = datadir + currenttime.strftime('%Y%m%d')

# create list of files that will be read
#licor table
files.extend(glob(yesterdaydir + '/*/Profiler_' + ft + '*.dat'))
files.extend(glob(todaydir + '/*/Profiler_' + ft + '*.dat'))

# loop through the files and read in the data
for filein in files:
   #print filein
   datain = toa5head(filein)   
   data.extend(datain)
# get the keys for the data stored in the dictionaries
datakeys = data[0][1].keys()
# make a list of list to put the data in before tranferring it to a numpy array
datalist = [[] for i in range(len(datakeys))]
IDlist=[]

#  make a list of all of the datetime objects
for i in range(len(data)):
    datatimelist.append(data[i][0])
# put the data from each dictionary into a list of lists
for j in datakeys:
    for i in range(len(data)):
        datalist[datakeys.index(j)].append(data[i][1].get(j))         
for i in range(len(data)):