filepath='/air/incoming/sylvania/2015/' #filepath='/Users/jthom/Documents/data/sylvania/2012/' # remove existing biomet files from #dellist = glob(filepath + '*biomet.txt') #for fn in dellist: #os.remove(fn) filesin=glob(filepath + '/Sylvania_met_data*.dat') timelist=[] datalist=[] for fn in filesin: datefilenameIn=datetime.strptime(fn,filepath + 'Sylvania_met_data_%Y_%m_%d_%H%M.dat') print fn data=toa5head(fn) timelist=[] datalist=[] for i in range(len(data)): timelist.append(data[i][0]) datalist.append(data[i][1]) # convert the long wave data to include the sensor body temperature adjustment for i in range(len(data)): datalist[i]['IR01Dn_Avg'] = datalist[i]['IR01Dn_Avg'] + 5.67e-8 * (datalist[i]['TC_Avg'] + 273.15) ** 4 datalist[i]['IR01Up_Avg'] = datalist[i]['IR01Up_Avg'] + 5.67e-8 * (datalist[i]['TC_Avg'] + 273.15) ** 4 if datefilenameIn < date1: keystoprint=keystoprint1 elif datefilenameIn >= date2:
files.extend(glob(yesterdaydir + '*/Profiler_' + ft + '*.dat')) files.extend(glob(todaydir + '*/Profiler_' + ft + '.dat')) # metdata table #metdatafiles.extend(glob(yesterdaydir + '*/Profiler_metdata*.dat')) #metdatafiles.extend(glob(todaydir + '*/Profiler_metdata*.dat')) # oldsensors table #oldsensorsfiles.extend(glob(yesterdaydir + '*/Profiler_oldsensors*.dat')) #oldsensorsfiles.extend(glob(todaydir + '*/Profiler_oldsensors*.dat')) # profileDiag table #profileDiagfiles.extend(glob(yesterdaydir + '*/Profiler_profileDiag*.dat')) #profileDiagfiles.extend(glob(todaydir + '*/Profiler_profileDiag*.dat')) # loop through the files and read in the data for filein in fastfiles: #print filein filedata = toa5head(filein) data.extend(filedata) # get the keys for the data stored in the dictionaries datakeys = data[0][1].keys() # make a list of list to put the data in before tranferring it to a numpy array datalist = [[] for i in range(len(datakeys))] # make a list of all of the datetime objects for i in range(len(data)): datatimelist.append(data[i][0]) # put the data from each dictionary into a list of lists for j in datakeys: for i in range(len(data)): datalist[datakeys.index(j)].append(data[i][1].get(j)) # put the data into a numpy array dataarray = np.array(datalist, dtype='d')
headtitles = timetitle + ',' + ','.join(titlelist) + '\n' headunits = timeunits + ',' + ','.join(unitslist) + '\n' #filepath='/Users/jthom/Documents/data/LostCreek/' filepath = '/air/incoming/LostCreek/' # find dates to process #dates=datetime.now() - timedelta(days=1) # actually, I need to process todays date. UTC has already flipped to the next day. dates = datetime.now() datestr = dates.strftime('%Y%m%d') filesin = glob(filepath + datestr + '/*metvalues*') timelist = [] datalist = [] for fn in filesin: data = toa5head(fn) for i in range(len(data)): timelist.append(data[i][0]) datalist.append(data[i][1]) timelistindx = sorted(range(len(timelist)), key=lambda k: timelist[k]) datafrmt = [] printstr = [] for i in timelistindx: for j in keystoprint: datafrmt.append('%.2f' % datalist[i][j]) # timstr.append(timelist[i].strftime('%Y-%m-%d %H%M')) printstr.append(timelist[i].strftime('%Y-%m-%d %H%M') + ',' + ','.join(datafrmt) + '\n') datafrmt = []
#create directories to look in and make a list of files to read yesterdaydir = datadir + yesterday.strftime('%Y_%m/%d/*/') todaydir = datadir + currenttime.strftime('%Y_%m/%d/*/') fastfiles.extend(glob(yesterdaydir + logger + '_fast_*.dat')) fastfiles.extend(glob(todaydir + logger + '_fast_*.dat')) slowfiles.extend(glob(yesterdaydir + logger + '_slow*.dat')) slowfiles.extend(glob(todaydir + logger + '_slow*.dat')) # initialize the lists for storing the data fast = [] slow = [] fasttimelist = [] slowtimelist = [] # loop through the files and read in the data for filein in fastfiles: filedata = toa5head(filein) fast.extend(filedata) for filein in slowfiles: filedata = toa5head(filein) slow.extend(filedata) # get the keys for the data stored in the dictionaries fastkeys = fast[0][1].keys() slowkeys = slow[0][1].keys() # make a list of list to put the data in before tranferring it to a numpy array fastlist = [[] for i in range(len(fastkeys))] slowlist = [[] for i in range(len(slowkeys))] # make a list of all of the datetime objects for i in range(len(fast)): fasttimelist.append(fast[i][0]) for i in range(len(slow)): slowtimelist.append(slow[i][0])
files.extend(glob(yesterdaydir + '/*/Profiler_' + ft + '*.dat')) files.extend(glob(todaydir + '/*/Profiler_' + ft + '*.dat')) # metdata table #metdatafiles.extend(glob(yesterdaydir + '*/Profiler_metdata*.dat')) #metdatafiles.extend(glob(todaydir + '*/Profiler_metdata*.dat')) # oldsensors table #oldsensorsfiles.extend(glob(yesterdaydir + '*/Profiler_oldsensors*.dat')) #oldsensorsfiles.extend(glob(todaydir + '*/Profiler_oldsensors*.dat')) # profileDiag table #profileDiagfiles.extend(glob(yesterdaydir + '*/Profiler_profileDiag*.dat')) #profileDiagfiles.extend(glob(todaydir + '*/Profiler_profileDiag*.dat')) # loop through the files and read in the data for filein in files: #print filein datain = toa5head(filein) data.extend(datain) # get the keys for the data stored in the dictionaries datakeys = data[0][1].keys() # make a list of list to put the data in before tranferring it to a numpy array datalist = [[] for i in range(len(datakeys))] # make a list of all of the datetime objects for i in range(len(data)): datatimelist.append(data[i][0]) # put the data from each dictionary into a list of lists for j in datakeys: for i in range(len(data)): datalist[datakeys.index(j)].append(data[i][1].get(j)) # put the data into a numpy array dataarray = np.array(datalist, dtype='d')
data = [] datatimelist = [] #create directories to look in and make a list of files to read yesterdaydir = datadir + yesterday.strftime('%Y%m%d') todaydir = datadir + currenttime.strftime('%Y%m%d') # create list of files that will be read #licor table files.extend(glob(yesterdaydir + '/*/Profiler_' + ft + '*.dat')) files.extend(glob(todaydir + '/*/Profiler_' + ft + '*.dat')) # loop through the files and read in the data for filein in files: #print filein datain = toa5head(filein) data.extend(datain) # get the keys for the data stored in the dictionaries datakeys = data[0][1].keys() # make a list of list to put the data in before tranferring it to a numpy array datalist = [[] for i in range(len(datakeys))] IDlist=[] # make a list of all of the datetime objects for i in range(len(data)): datatimelist.append(data[i][0]) # put the data from each dictionary into a list of lists for j in datakeys: for i in range(len(data)): datalist[datakeys.index(j)].append(data[i][1].get(j)) for i in range(len(data)):