Exemple #1
0
 def compute_loss(self, docs: Sequence[Doc], golds: Sequence[GoldParse],
                  outputs: torch.Tensor) -> None:
     self.require_model()
     targets = outputs.new_tensor(
         [[gold.cats[label] for label in self.labels] for gold in golds])
     loss = F.binary_cross_entropy_with_logits(outputs, targets)
     add_loss_to_docs(docs, loss)
Exemple #2
0
 def compute_loss(self, docs: Sequence[Doc], golds: Sequence[GoldParse],
                  outputs: torch.Tensor) -> None:
     target = self._create_target_from_docs_golds(docs, golds, outputs)
     loss = F.cross_entropy(outputs.transpose(1, 2),
                            target,
                            ignore_index=self.ignore_label_index)
     add_loss_to_docs(docs, loss)
Exemple #3
0
    def compute_loss(self, docs: Sequence[Doc], golds: Sequence[GoldParse],
                     outputs: torch.Tensor) -> None:
        self.require_model()
        targets = self.golds_to_tensor(golds)
        weight = self.label_weights.to(device=self.device)  # type: ignore

        loss = F.cross_entropy(outputs, targets, weight=weight)
        add_loss_to_docs(docs, loss)
Exemple #4
0
 def train():
     docs, golds = nlp._format_docs_and_golds(texts, labels)
     before = sum_param(pipe.optim_parameters())
     nlp._update_pipes(docs, golds)
     h = get_last_hidden_state_from_docs(docs)
     loss = h.sum() + torch.tensor(0.0, requires_grad=True)
     add_loss_to_docs(docs, loss)
     nlp._update_params(docs, optimizer)
     return abs(before - sum_param(pipe.optim_parameters()))
Exemple #5
0
 def update(self, docs: List[Doc], golds: List[GoldParse],
            **kwargs):  # type: ignore
     assert isinstance(docs, list)
     self.require_model()
     logits = self.model(get_last_hidden_state_from_docs(docs))
     target = self._create_target_from_docs_golds(docs, golds, logits)
     loss = F.cross_entropy(logits.transpose(1, 2),
                            target,
                            ignore_index=self.ignore_label_index)
     add_loss_to_docs(docs, loss)
Exemple #6
0
 def update(  # type: ignore
         self, docs: List[Doc], golds: Iterable[GoldParse], **kwargs):
     self.require_model()
     self.model.train()
     x = get_last_hidden_state_from_docs(docs)
     preds: torch.Tensor = self.model(x)
     preds = preds.view(-1, self.model.config.vocab_size)
     targets = (get_maskedlm_labels(docs).view(-1)[:len(preds)].to(
         device=self.device))
     loss = F.cross_entropy(preds, targets, ignore_index=-1)
     add_loss_to_docs(docs, loss)
Exemple #7
0
    def update(  # type: ignore
            self, docs: List[Doc], golds: Iterable[GoldParse], **kwargs):
        assert isinstance(docs, list)
        self.require_model()
        self.model.train()

        x = get_last_hidden_state_from_docs(docs)
        logits = self.model(x)
        targets = self.golds_to_tensor(golds)
        weight = self.label_weights.to(device=self.device)  # type: ignore

        loss = F.cross_entropy(logits, targets, weight=weight)
        add_loss_to_docs(docs, loss)