Exemple #1
0
def cal_mae(img_root,gt_dmap_root,model_param_path):
    '''
    Calculate the MAE of the test data.
    img_root: the root of test image data.
    gt_dmap_root: the root of test ground truth density-map data.
    model_param_path: the path of specific mcnn parameters.
    '''
    device=torch.device("cpu")
    model=CANNet()
    model.load_state_dict(torch.load(model_param_path))
    model.to(device)
    dataset=CrowdDataset(img_root,gt_dmap_root,8,phase='test')
    dataloader=torch.utils.data.DataLoader(dataset,batch_size=1,shuffle=False)
    model.eval()
    mae=0
    with torch.no_grad():
        for i,(img,gt_dmap) in enumerate(tqdm(dataloader)):
            img=img.to(device)
            gt_dmap=gt_dmap.to(device)
            # forward propagation
            et_dmap=model(img)
            mae+=abs(et_dmap.data.sum()-gt_dmap.data.sum()).item()
            del img,gt_dmap,et_dmap

    print("model_param_path:"+model_param_path+" mae:"+str(mae/len(dataloader)))
def main_live(args):

    capture = cv2.VideoCapture(args.stream)
    num_gpus = torch.cuda.device_count()
    device = 'cuda' if num_gpus >= 1 else 'cpu'
    model = CANNet().to(device)
    model.load_state_dict(
        torch.load(args.weights, map_location=torch.device(device)))
    transform = transforms.Compose([transforms.ToTensor()])
    model.eval()
    while (capture.isOpened()):
        ret, frame = capture.read()
        if (ret):
            key = cv2.waitKey(1) & 0xFF

            copy_frame = copy.copy(frame)

            copy_frame = transform(copy_frame)

            # putting the batch dimension on tensor
            copy_frame = copy_frame.unsqueeze(0)
            copy_frame = copy_frame.to(device)
            result = model(copy_frame)

            crowd_count = int(result.data.sum().item())

            font = cv2.FONT_HERSHEY_SIMPLEX
            cv2.putText(frame, "Crowd Couting: " + str(crowd_count), (10, 35),
                        font, 1.3, (0, 0, 255), 3, cv2.LINE_AA)
            cv2.imshow("Frame", frame)

            print(crowd_count)

            if key == ord("q"):
                break
Exemple #3
0
def estimate_density_map(img_root,gt_dmap_root,model_param_path,index):
    '''
    Show one estimated density-map.
    img_root: the root of test image data.
    gt_dmap_root: the root of test ground truth density-map data.
    model_param_path: the path of specific mcnn parameters.
    index: the order of the test image in test dataset.
    '''
    device=torch.device("cuda")
    model=CANNet().to(device)
    model.load_state_dict(torch.load(model_param_path))
    dataset=CrowdDataset(img_root,gt_dmap_root,8,phase='test')
    dataloader=torch.utils.data.DataLoader(dataset,batch_size=1,shuffle=False)
    model.eval()
    for i,(img,gt_dmap) in enumerate(dataloader):
        if i==index:
            img=img.to(device)
            gt_dmap=gt_dmap.to(device)
            # forward propagation
            et_dmap=model(img).detach()
            et_dmap=et_dmap.squeeze(0).squeeze(0).cpu().numpy()
            print(et_dmap.shape)
            plt.imshow(et_dmap,cmap=CM.jet)
            plt.show()
            break
Exemple #4
0
def estimate_density_map(img_root,gt_dmap_root,model_param_path):
    '''
    Show one estimated density-map.
    img_root: the root of test image data.
    gt_dmap_root: the root of test ground truth density-map data.
    model_param_path: the path of specific mcnn parameters.
    index: the order of the test image in test dataset.
    '''
    model=CANNet().cuda()
    model.load_state_dict(torch.load(model_param_path))
    model.eval()
    dataset=CrowdDataset(img_root,gt_dmap_root,8,phase='test')
    dataloader=torch.utils.data.DataLoader(dataset,batch_size=1,shuffle=False)
    print('dataloader = ',dataloader)

    for img,gt_dmap,img_name in dataloader:
        print('img_shape = ',img.shape)
        st = time.time()
        img=img.cuda()
        gt_dmap=gt_dmap.cuda()
        # forward propagation
        et_dmap=model(img).detach()
        et_dmap=et_dmap.squeeze(0).squeeze(0).cpu().numpy()
        pred_frame = plt.gca()
        plt.imshow(et_dmap,cmap=CM.jet)
        plt.show()
        pred_frame.axes.get_yaxis().set_visible(False)
        pred_frame.axes.get_xaxis().set_visible(False)
        pred_frame.spines['top'].set_visible(False)
        pred_frame.spines['bottom'].set_visible(False)
        pred_frame.spines['left'].set_visible(False)
        pred_frame.spines['right'].set_visible(False)
        plt.savefig( 'result/'+str(img_name)+'_out' + '.png',bbox_inches='tight', pad_inches=0, dpi=200)
        plt.close()
        print('tt = ',time.time()-st)
        break
                        help="Use cpu or gpu? For gpu cuda is mandatory")
    parser.add_argument("--opacity",
                        default=0.7,
                        type=float,
                        help="Opacity value for the density map overlap")
    args = parser.parse_args()

    # setup the model
    if args.device == "cpu":
        device = torch.device("cpu")
    elif args.device == "gpu":
        device = torch.device("cuda")
        torch.backends.cudnn.enabled = True  # use cudnn?
    else:
        raise Exception("Unknown device. Use \"cpu\" or \"gpu\".")
    model = CANNet().to(device)
    model.load_state_dict(torch.load(args.model))
    model.eval()
    torch.no_grad()

    # open the video stream / file
    cap = cv2.VideoCapture(args.video)
    while (cap.isOpened()):
        _, frame = cap.read()

        # convert to pytorch tensor and normalize
        tensor = torchvision.transforms.ToTensor()(cv2.cvtColor(
            frame, cv2.COLOR_BGR2RGB))
        # ---------- to change after new norm training ------------------------
        tensor = torchvision.transforms.functional.normalize(
            tensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
Exemple #6
0
@contact: [email protected] 
@project: Context-Aware_Crowd_Counting-pytorch
@file: demo_video.py
@time: 6/27/19 2:37 PM
@desc: test videos for serials frame
'''
import torch
import cv2
import random
import matplotlib.pyplot as plt
import matplotlib.cm as CM
from torchvision import transforms
from cannet import CANNet
from my_dataset import CrowdDataset

model = CANNet()
model_param_path = './checkpoints/cvpr2019CAN_353model.pth'
model.load_state_dict(torch.load(model_param_path))
model.cuda()
model.eval()
torch.backends.cudnn.enabled = False


def read_img(img, gt_downsample):
    img = img / 255
    if len(img.shape) == 2:
        img = img[:, :, np.newaxis]
        img = np.concatenate((img, img, img), 2)

    if gt_downsample > 1:
        ds_rows = int(img.shape[0] // gt_downsample)
def main(args):
    wandb.init(project="crowd", config=args)
    args = wandb.config
    # print(args)

    # vis=visdom.Visdom()
    torch.cuda.manual_seed(args.seed)
    model=CANNet().to(args.device)
    criterion=nn.MSELoss(reduction='sum').to(args.device)
    # optimizer=torch.optim.SGD(model.parameters(), args.lr,
    #                           momentum=args.momentum,
    #                           weight_decay=0)
    optimizer=torch.optim.Adam(model.parameters(), args.lr, weight_decay=args.decay)
    train_dataset = CrowdDataset(args.train_image_root, args.train_dmap_root, gt_downsample=8, phase='train')
    train_loader  = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
    val_dataset   = CrowdDataset(args.val_image_root, args.val_dmap_root, gt_downsample=8, phase='test')
    val_loader    = torch.utils.data.DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False)
    
    if not os.path.exists('./checkpoints'):
        os.mkdir('./checkpoints')
    
    min_mae = 10000
    min_epoch = 0
    for epoch in tqdm(range(0, args.epochs)):
        # training phase
        model.train()
        model.zero_grad()
        train_loss = 0
        train_mae = 0
        train_bar = tqdm(train_loader)
        for i, (img,gt_dmap) in enumerate(train_bar):
            # print(img.shape, gt_dmap.shape)
            img = img.to(args.device)
            gt_dmap = gt_dmap.to(args.device)
            
            # forward propagation
            et_dmap = model(img)
            # calculate loss
            # print(et_dmap.shape, gt_dmap.shape)
            loss = criterion(et_dmap, gt_dmap)
            train_loss += loss.item()
            train_mae += abs(et_dmap.data.sum()-gt_dmap.data.sum()).item()
            loss = loss/args.gradient_accumulation_steps
            loss.backward()
            if (i+1)%args.gradient_accumulation_steps == 0:
                optimizer.step()
                model.zero_grad()
            train_bar.set_postfix(loss=train_loss/(i+1), mae=train_mae/(i+1))
        optimizer.step()
        model.zero_grad()
#        print("epoch:",epoch,"loss:",epoch_loss/len(dataloader))
        torch.save(model.state_dict(),'./checkpoints/epoch_'+str(epoch)+".pth")
    
        # testing phase
        model.eval()
        val_loss = 0
        val_mae = 0
        for i, (img,gt_dmap) in enumerate((val_loader)):
            img = img.to(args.device)
            gt_dmap = gt_dmap.to(args.device)

            # forward propagation
            et_dmap = model(img)
            loss = criterion(et_dmap, gt_dmap)
            val_loss += loss.item()
            val_mae += abs(et_dmap.data.sum()-gt_dmap.data.sum()).item()
            del img,gt_dmap,et_dmap

        if val_mae/len(val_loader) < min_mae:
            min_mae = val_mae/len(val_loader)
            min_epoch = epoch
        # print("epoch:" + str(epoch) + " error:" + str(mae/len(val_loader)) + " min_mae:"+str(min_mae) + " min_epoch:"+str(min_epoch))
        wandb.log({"loss/train": train_loss/len(train_loader),
                   "mae/train": train_mae/len(train_loader),
                   "loss/val": val_loss/len(val_loader),
                   "mae/val": val_mae/len(val_loader),
        }, commit=False)

        # show an image
        index = random.randint(0, len(val_loader)-1)
        img, gt_dmap = val_dataset[index]
        gt_dmap = gt_dmap.squeeze(0).detach().cpu().numpy()
        wandb.log({"image/img": [wandb.Image(img)]}, commit=False)
        wandb.log({"image/gt_dmap": [wandb.Image(gt_dmap/(gt_dmap.max())*255, caption=str(gt_dmap.sum()))]}, commit=False)

        img = img.unsqueeze(0).to(args.device)
        et_dmap = model(img)
        et_dmap = et_dmap.squeeze(0).detach().cpu().numpy()
        wandb.log({"image/et_dmap": [wandb.Image(et_dmap/(et_dmap.max())*255, caption=str(et_dmap.sum()))]})
        
    
    import time
    print(time.strftime('%Y.%m.%d %H:%M:%S',time.localtime(time.time())))
Exemple #8
0
    test_dmap_root = './data/Shanghai_part_A/test_data/ground_truth'
    gpu_or_cpu = 'cuda'  # use cuda or cpu
    lr = 1e-7
    batch_size = 1
    momentum = 0.95
    epochs = 20000
    steps = [-1, 1, 100, 150]
    scales = [1, 1, 1, 1]
    workers = 4
    seed = time.time()
    print_freq = 30

    vis = visdom.Visdom()
    device = torch.device(gpu_or_cpu)
    torch.cuda.manual_seed(seed)
    model = CANNet().to(device)
    criterion = nn.MSELoss(size_average=False).to(device)
    optimizer = torch.optim.SGD(model.parameters(),
                                lr,
                                momentum=momentum,
                                weight_decay=0)
    #    optimizer=torch.optim.Adam(model.parameters(),lr)
    train_dataset = CrowdDataset(train_image_root,
                                 train_dmap_root,
                                 gt_downsample=8)
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=1,
                                               shuffle=True)
    test_dataset = CrowdDataset(test_image_root,
                                test_dmap_root,
                                gt_downsample=8)
    test_dmap_root='./data/Shanghai_part_A/test_data/ground_truth'
    gpu_or_cpu='cuda' # use cuda or cpu
    lr                = 1e-7
    batch_size        = 1
    momentum          = 0.95
    epochs            = 20000
    steps             = [-1,1,100,150]
    scales            = [1,1,1,1]
    workers           = 4
    seed              = time.time()
    print_freq        = 30 
    
    vis=visdom.Visdom()
    device=torch.device(gpu_or_cpu)
    torch.cuda.manual_seed(seed)
    model=CANNet().to(device)
    criterion=nn.MSELoss(size_average=False).to(device)
    optimizer=torch.optim.SGD(model.parameters(),lr,
                              momentum=momentum,
                              weight_decay=0)
#    optimizer=torch.optim.Adam(model.parameters(),lr)
    train_dataset=CrowdDataset(train_image_root,train_dmap_root,gt_downsample=8,phase='train')
    train_loader=torch.utils.data.DataLoader(train_dataset,batch_size=1,shuffle=True)
    test_dataset=CrowdDataset(test_image_root,test_dmap_root,gt_downsample=8,phase='test')
    test_loader=torch.utils.data.DataLoader(test_dataset,batch_size=1,shuffle=False)
    
    if not os.path.exists('./checkpoints'):
        os.mkdir('./checkpoints')
    min_mae=10000
    min_epoch=0
    train_loss_list=[]