Exemple #1
0
class DQNAgent:
    def __init__(self, state_size, action_size):
        self.state_size = state_size
        self.action_size = action_size
        self.replay_buffer = deque(maxlen=2000)
        self.gamma = 0.95    # discount rate
        self.epsilon = 1.0  # exploration rate
        self.epsilon_min = 0.01
        self.epsilon_decay = 0.995
        self.learning_rate = 0.001
        self._build_model()
        self.target_hard_update_interval = 100
        self.num_train_steps = 0

    def _build_model(self):
        self.model, self.target_model = CapsNet(self.state_size, self.action_size, 3)

    def remember(self, state, action, reward, next_state, done):
        self.replay_buffer.append((state, action, reward, next_state, done))

    def act(self, state):
        if np.random.rand() <= self.epsilon:
            return actions[random.randrange(self.action_size)]
        act_values = self.model.predict(state)
        return actions[np.argmax(act_values[0])] # returns action

    def train(self, batch_size):
        minibatch = random.sample(self.replay_buffer, batch_size)
        for state, action, reward, next_state, done in minibatch:
            target = reward
            if not done:
                target = (reward + self.gamma *
                          np.amax(self.model.predict(next_state)[0]))
            target_f = self.target_model.predict(state)
            target_f[0][action] = target
            self.model.fit(state, target_f, epochs=1, verbose=0)
            self.num_train_steps += 1
            if self.num_train_steps % self.target_hard_update_interval==0:
                self.target_model = keras.models.clone_model(self.model)
                self.target_model.set_weights(self.model.get_weights())
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay

    def load(self, name):
        self.model.load_weights(name)

    def save(self, name):
        self.model.save_weights(name)

    def preprocess(self, image):
        return image
Exemple #2
0
 trX = np.expand_dims(trX[:, :, :, 1], axis=3)
 vaX = np.expand_dims(vaX[:, :, :, 1], axis=3)
 teX = np.expand_dims(teX[:, :, :, 1], axis=3)
 EndTime = time.time()
 cprint('Takes ' + str(EndTime - StartTime) + 'time to load data',
        'magenta')
 print(str(trX.shape), str(trY.shape), str(vaX.shape), str(vaY.shape))
 # Define Model
 #print(trY)
 #cprint(str(np.argmax(trY,1)),'red')
 cprint(str(len(np.unique(np.argmax(trY, 1)))), 'red')
 cprint(str(len(np.unique(np.argmax(vaY, 1)))), 'red')
 with tf.device('/cpu:0'):
     model, eval_model, manipulate_model = CapsNet(
         input_shape=trX.shape[1:],
         n_class=len(np.unique(np.argmax(trY, 1))),
         kernel=args.kernel,
         primary_channel=args.primary_channel,
         routings=args.routings)
     #model = CapsNet_NoDecoder(input_shape=trX.shape[1:],
     #                    n_class=len(np.unique(np.argmax(trY, 1))),
     #                   kernel=args.kernel,
     #                  primary_channel=args.primary_channel,
     #                 routings=args.routings)
 model.summary()
 multi_model = multi_gpu_model(model, gpus=args.gpus)
 # Save path and load model
 if not os.path.exists(save_path):
     os.mkdir(save_path)
 if args.keep:  # init the model weights with provided one
     cprint('load weight from:' + save_path, 'yellow')
     multi_model.load_weights(save_path)
    print(args)

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)

    # load data
    if args.dataset == 0:
        (x_train, y_train), (x_test, y_test) = load_mnist()
    elif args.dataset == 1:
        (x_train, y_train), (x_test, y_test) = load_fashion_mnist()
    elif args.dataset == 2:
        (x_train, y_train), (x_test, y_test) = load_svhn()
    # define model
    model, eval_model, manipulate_model = CapsNet(
        input_shape=x_train.shape[1:],
        n_class=len(np.unique(np.argmax(y_train, 1))),
        routings=args.routings,
        l1=args.l1)
    model.summary()

    flags = [0] * 10
    index = [0] * 10
    digits = np.where(y_test == 1)[1]
    for i, num in enumerate(digits):
        num = int(num)
        if flags[num]:
            continue
        else:
            flags[num] = 1
            index[num] = i
        if np.all(flags):
Exemple #4
0
 def _build_model(self):
     self.model, self.target_model = CapsNet(self.state_size, self.action_size, 3)
                        default=0.001,
                        type=float,
                        help="Initial learning rate")
    parser.add_argument('--gpus', default=2, type=int)
    args = parser.parse_args()
    print(args)
    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)

    # load data
    (x_train, y_train), (x_test, y_test) = load_mnist()

    # define model
    with tf.device('/cpu:0'):
        model, eval_model, manipulate_model = CapsNet(
            input_shape=x_train.shape[1:],
            n_class=len(np.unique(np.argmax(y_train, 1))),
            routings=args.routings)
    model.summary()
    plot_model(model, to_file=args.save_dir + '/model.png', show_shapes=True)

    # train or test
    if args.weights is not None:  # init the model weights with provided one
        model.load_weights(args.weights)
    if not args.testing:
        # define muti-gpu model
        multi_model = multi_gpu_model(model, gpus=args.gpus)
        train(model=multi_model,
              data=((x_train, y_train), (x_test, y_test)),
              args=args)
        model.save_weights(args.save_dir + '/trained_model.h5')
        print('Trained model saved to \'%s/trained_model.h5\'' % args.save_dir)
    parser.add_argument('--is_training', default=1, type=int)
    parser.add_argument('--weights', default=None)
    parser.add_argument('--lr', default=0.001, type=float)
    parser.add_argument('--gpus', default=2, type=int)
    args = parser.parse_args()
    print(args)
    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)

    # load data
    (x_train, y_train), (x_test, y_test) = load_mnist()

    # define model
    with tf.device('/cpu:0'):
        model, eval_model = CapsNet(input_shape=x_train.shape[1:],
                                    n_class=len(np.unique(np.argmax(y_train, 1))),
                                    num_routing=args.num_routing)
    model.summary()
    plot_model(model, to_file=args.save_dir+'/model.png', show_shapes=True)

    # define muti-gpu model
    multi_model = multi_gpu_model(model, gpus=args.gpus)
    # train or test
    if args.weights is not None:  # init the model weights with provided one
        model.load_weights(args.weights)
    if args.is_training:
        train(model=multi_model, data=((x_train, y_train), (x_test, y_test)), args=args)
        model.save_weights(args.save_dir + '/trained_model.h5')
        print('Trained model saved to \'%s/trained_model.h5\'' % args.save_dir)
        test(model=eval_model, data=(x_test, y_test))
    else:  # as long as weights are given, will run testing