def main(args): # Load arguments from checkpoint torch.manual_seed(args.seed) state_dict = torch.load(args.checkpoint_path, map_location=lambda s, l: default_restore_location(s, 'cpu')) args = argparse.Namespace(**{**vars(args), **vars(state_dict['args'])}) utils.init_logging(args) # Load dictionary dictionary = Dictionary.load(os.path.join(args.data, 'dict.txt')) logging.info('Loaded a dictionary of {} words'.format(len(dictionary))) # Load dataset test_dataset = CaptionDataset(os.path.join(args.data, 'test-tokens.p'), os.path.join(args.data, 'test-features'), dictionary) logging.info('Created a test dataset of {} examples'.format(len(test_dataset))) test_loader = torch.utils.data.DataLoader( test_dataset, num_workers=args.num_workers, collate_fn=test_dataset.collater, pin_memory=True, batch_sampler=BatchSampler(test_dataset, args.max_tokens, args.batch_size, shuffle=False, seed=args.seed)) # Build model model = models.build_model(args, dictionary).cuda() model.load_state_dict(state_dict['model']) logging.info('Loaded a model from checkpoint {}'.format(args.checkpoint_path)) generator = SequenceGenerator( model, dictionary, beam_size=args.beam_size, maxlen=args.max_len, stop_early=eval(args.stop_early), normalize_scores=eval(args.normalize_scores), len_penalty=args.len_penalty, unk_penalty=args.unk_penalty, ) progress_bar = tqdm(test_loader, desc='| Generation', leave=False) for i, sample in enumerate(progress_bar): sample = utils.move_to_cuda(sample) with torch.no_grad(): hypos = generator.generate(sample['image_features']) for i, (sample_id, hypos) in enumerate(zip(sample['id'].data, hypos)): if sample['caption_tokens'] is not None: target_tokens = sample['caption_tokens'].data[i, :] target_tokens = target_tokens[target_tokens.ne(dictionary.pad_idx)].int().cpu() target_str = dictionary.string(target_tokens) print('T-{:<6}\t{}'.format(sample_id, colored(target_str, 'green'))) # Process top predictions for i, hypo in enumerate(hypos[:min(len(hypos), args.num_hypo)]): hypo_tokens = hypo['tokens'].int().cpu() hypo_str = dictionary.string(hypo_tokens) alignment = hypo['alignment'].int().cpu() if hypo['alignment'] is not None else None print('H-{:<6}\t{}'.format(sample_id, colored(hypo_str, 'blue'))) if hypo['positional_scores'] is not None: print('P-{:<6}\t{}'.format(sample_id, ' '.join(map(lambda x: '{:.4f}'.format(x), hypo['positional_scores'].tolist())))) if alignment is not None: print('A-{:<6}\t{}'.format(sample_id, ' '.join(map(lambda x: str(x.item()), alignment))))
caption_file, nsent, ntok, 100.0 * sum(unk_counter.values()) / ntok, dictionary.unk_word)) def extract_features(args, model, image_dataset, output_dir): os.makedirs(output_dir, exist_ok=True) data_loader = DataLoader(image_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False) progress_bar = tqdm(data_loader, desc='| Feature Extraction', leave=False) filenames = {} for caption_ids, image_paths, sample in progress_bar: image_features = model(utils.move_to_cuda(sample)) image_features = image_features.view(*image_features.size()[:-2], -1) # B x C x (H x W) -> B x (H x W) x C image_features = image_features.transpose(1, 2) image_features = image_features.cpu().detach().numpy().astype(np.float32) for id, image_path, features in zip(caption_ids.cpu().numpy().astype(np.int32), image_paths, image_features): filename = os.path.join(output_dir, '{}.p'.format(str(id))) filenames[id] = (image_path, filename) with open(filename, 'wb') as file: pickle.dump(features, file, protocol=pickle.HIGHEST_PROTOCOL) with open(os.path.join(output_dir, 'metadata.p'), 'wb') as file: pickle.dump(filenames, file) if __name__ == '__main__': args = get_args() utils.init_logging(args) main(args)
def main(args): random.seed(args.seed) torch.manual_seed(args.seed) # Load arguments from checkpoint (no need to load pretrained embeddings or write to log file) state_dict = torch.load( args.checkpoint_path, map_location=lambda s, l: default_restore_location(s, 'cpu')) args = argparse.Namespace( **{ **vars(state_dict['args']), **vars(args), 'embed_path': None, 'log_file': None }) utils.init_logging(args) # Load dictionary dictionary = Dictionary.load(os.path.join(args.data, 'dict.txt')) logging.info('Loaded a dictionary of {} words'.format(len(dictionary))) # Load dataset test = pd.read_csv(os.path.join(args.dataset_path, args.test_caption)) if args.caption_ids is None: args.caption_ids = random.sample(test['uId'].tolist(), 10) image_ids = [ test.loc[test['uId'] == id]['imgId'].tolist()[0] for id in args.caption_ids ] reference_captions = [ test.loc[test['uId'] == id]['report'].tolist()[0] for id in args.caption_ids ] image_names = [ os.path.join(args.dataset_path, args.test_image, id + '.png') for id in image_ids ] # Transform image transform = transforms.Compose([ transforms.Resize((args.image_size, args.image_size)), transforms.RandomCrop(args.crop_size), transforms.RandomHorizontalFlip(), ]) images = [transform(Image.open(filename)) for filename in image_names] transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) sample = torch.stack([transform(image.convert('RGB')) for image in images], dim=0) # Extract image features vgg = vgg19(pretrained=True).eval().cuda() model = nn.Sequential(*list(vgg.features.children())[:-2]) image_features = model(utils.move_to_cuda(sample)) image_features = image_features.view(*image_features.size()[:-2], -1) # B x C x (H x W) -> B x (H x W) x C image_features = image_features.transpose(1, 2) # Load model and build generator model = models.build_model(args, dictionary).cuda() model.load_state_dict(state_dict['model']) logging.info('Loaded a model from checkpoint {}'.format( args.checkpoint_path)) generator = SequenceGenerator( model, dictionary, beam_size=args.beam_size, maxlen=args.max_len, stop_early=eval(args.stop_early), normalize_scores=eval(args.normalize_scores), len_penalty=args.len_penalty, unk_penalty=args.unk_penalty, ) # Generate captions with torch.no_grad(): hypos = generator.generate(image_features) for i, (id, image, reference_caption) in enumerate( zip(args.caption_ids, images, reference_captions)): output_image = os.path.join('images', '{}.png'.format(id)) attention = hypos[i][0]['attention'].view(14, 14, -1).cpu().numpy() system_tokens = [ dictionary.words[tok] for tok in hypos[i][0]['tokens'] if tok != dictionary.eos_idx ] ''' dumpeo dict para entender mejor las predicciones y referencias''' prediction = "".join([ " " + i if not i.startswith("'") and i not in string.punctuation else i for i in system_tokens ]).strip() dic = {'prediction': prediction, 'reference': reference_caption} with open('images/{}.p'.format(id), 'wb') as f: pickle.dump(dic, f) utils.plot_image_caption(image, output_image, system_tokens, reference_caption, attention)
def main(args): if not torch.cuda.is_available(): raise NotImplementedError('Training on CPU is not supported.') torch.manual_seed(args.seed) utils.init_logging(args) # Load dictionary dictionary = Dictionary.load(os.path.join(args.data, 'dict.txt')) logging.info('Loaded a dictionary of {} words'.format(len(dictionary))) # Load datasets train_dataset = CaptionDataset(os.path.join(args.data, 'train-tokens.p'), os.path.join(args.data, 'train-features'), dictionary) logging.info('Created a train dataset of {} examples'.format(len(train_dataset))) valid_dataset = CaptionDataset(os.path.join(args.data, 'valid-tokens.p'), os.path.join(args.data, 'valid-features'), dictionary) logging.info('Created a validation dataset of {} examples'.format(len(valid_dataset))) # Build model and criterion model = models.build_model(args, dictionary).cuda() logging.info('Built a model with {} parameters'.format(sum(p.numel() for p in model.parameters() if p.requires_grad))) criterion = nn.CrossEntropyLoss(ignore_index=dictionary.pad_idx, reduction='sum').cuda() # Build an optimizer and a learning rate schedule trainable_params = filter(lambda p: p.requires_grad, model.parameters()) optimizer = torch.optim.Adam(trainable_params, args.lr, weight_decay=args.weight_decay) lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, min_lr=args.min_lr, factor=args.lr_shrink) # Load last checkpoint if one exists state_dict = utils.load_checkpoint(args, model, optimizer, lr_scheduler) last_epoch = state_dict['last_epoch'] if state_dict is not None else -1 optimizer.param_groups[0]['lr'] = args.lr dic= {} # 0->loss, 1->lr, 4->grad_norm, 6->valid_loss for epoch in range(last_epoch + 1, args.max_epoch): train_loader = torch.utils.data.DataLoader( train_dataset, num_workers=args.num_workers, collate_fn=train_dataset.collater, pin_memory=True, batch_sampler=BatchSampler(train_dataset, args.max_tokens, args.batch_size, shuffle=True, seed=args.seed)) model.train() stats = {'loss': 0., 'lr': 0., 'num_tokens': 0., 'batch_size': 0., 'grad_norm': 0., 'clip': 0.} progress_bar = tqdm(train_loader, desc='| Epoch {:03d}'.format(epoch), leave=False) for i, sample in enumerate(progress_bar): # Forward and backward pass sample = utils.move_to_cuda(sample) output, _ = model(sample['image_features'], sample['caption_inputs']) loss = criterion(output.view(-1, output.size(-1)), sample['caption_tokens'].view(-1)) optimizer.zero_grad() loss.backward() # Normalize gradients by number of tokens and perform clipping for name, param in model.named_parameters(): if param.grad is not None: #parche param.grad.data.div_(sample['num_tokens']) grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_norm) optimizer.step() # Update statistics for progress bar stats['loss'] += loss.item() / sample['num_tokens'] stats['lr'] += optimizer.param_groups[0]['lr'] stats['num_tokens'] += sample['num_tokens'] / len(sample['caption_inputs']) stats['batch_size'] += len(sample['caption_inputs']) stats['grad_norm'] += grad_norm stats['clip'] += 1 if grad_norm > args.clip_norm else 0 progress_bar.set_postfix({key: '{:.4g}'.format(value / (i + 1)) for key, value in stats.items()}, refresh=True) logging.info('Epoch {:03d}: {}'.format(epoch, ' | '.join(key + ' {:.4g}'.format( value / len(progress_bar)) for key, value in stats.items()))) dic[epoch] = list(map(lambda x: x/len(progress_bar), stats.values())) # Adjust learning rate based on validation loss valid_loss = validate(args, model, criterion, valid_dataset, epoch) lr_scheduler.step(valid_loss) dic[epoch].append(valid_loss) # Save checkpoints if epoch % args.save_interval == 0: utils.save_checkpoint(args, model, optimizer, lr_scheduler, epoch, valid_loss) if optimizer.param_groups[0]['lr'] <= args.min_lr: logging.info('Done training!') break with open('logs_dict.p', 'wb') as ff: ######################### pickle.dump(dic, ff)
def main(args): random.seed(args.seed) torch.manual_seed(args.seed) # Load arguments from checkpoint (no need to load pretrained embeddings or write to log file) state_dict = torch.load( args.checkpoint_path, map_location=lambda s, l: default_restore_location(s, 'cpu')) args = argparse.Namespace( **{ **vars(state_dict['args']), **vars(args), 'embed_path': None, 'log_file': None }) utils.init_logging(args) # Load dictionary dictionary = Dictionary.load(os.path.join(args.data, 'dict.txt')) logging.info('Loaded a dictionary of {} words'.format(len(dictionary))) # Load dataset coco = COCO(os.path.join(args.coco_path, args.test_caption)) if args.caption_ids is None: args.caption_ids = random.sample(list(coco.anns.keys()), 50) image_ids = [coco.anns[id]['image_id'] for id in args.caption_ids] reference_captions = [coco.anns[id]['caption'] for id in args.caption_ids] image_names = [ os.path.join(args.coco_path, args.test_image, coco.loadImgs(id)[0]['file_name']) for id in image_ids ] # Transform image transform = transforms.Compose([ transforms.Resize((args.image_size, args.image_size)), transforms.RandomCrop(args.crop_size), transforms.RandomHorizontalFlip(), ]) images = [transform(Image.open(filename)) for filename in image_names] transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) sample = torch.stack([transform(image.convert('RGB')) for image in images], dim=0) # Extract image features vgg = vgg19(pretrained=True).eval().cuda() model = nn.Sequential(*list(vgg.features.children())[:-2]) image_features = model(utils.move_to_cuda(sample)) image_features = image_features.view(*image_features.size()[:-2], -1) # B x C x (H x W) -> B x (H x W) x C image_features = image_features.transpose(1, 2) # Load model and build generator model = models.build_model(args, dictionary).cuda() model.load_state_dict(state_dict['model']) logging.info('Loaded a model from checkpoint {}'.format( args.checkpoint_path)) generator = SequenceGenerator( model, dictionary, beam_size=args.beam_size, maxlen=args.max_len, stop_early=eval(args.stop_early), normalize_scores=eval(args.normalize_scores), len_penalty=args.len_penalty, unk_penalty=args.unk_penalty, ) # Generate captions with torch.no_grad(): hypos = generator.generate(image_features) for i, (id, image, reference_caption) in enumerate( zip(args.caption_ids, images, reference_captions)): output_image = os.path.join('images', '{}.jpg'.format(id)) attention = hypos[i][0]['attention'].view(14, 14, -1).cpu().numpy() system_tokens = [ dictionary.words[tok] for tok in hypos[i][0]['tokens'] if tok != dictionary.eos_idx ] utils.plot_image_caption(image, output_image, system_tokens, reference_caption, attention)