Exemple #1
0
    def attribute(  # type: ignore
        self,
        inputs: TensorOrTupleOfTensorsGeneric,
        baselines: BaselineType = None,
        target: TargetType = None,
        additional_forward_args: Any = None,
        return_convergence_delta: bool = False,
    ) -> Union[TensorOrTupleOfTensorsGeneric, Tuple[
            TensorOrTupleOfTensorsGeneric, Tensor]]:
        # Keeps track whether original input is a tuple or not before
        # converting it into a tuple.
        is_inputs_tuple = _is_tuple(inputs)
        inputs, baselines = _format_input_baseline(inputs, baselines)

        rand_coefficient = torch.tensor(
            np.random.uniform(0.0, 1.0, inputs[0].shape[0]),
            device=inputs[0].device,
            dtype=inputs[0].dtype,
        )

        input_baseline_scaled = tuple(
            _scale_input(input, baseline, rand_coefficient)
            for input, baseline in zip(inputs, baselines))
        grads = self.gradient_func(self.forward_func, input_baseline_scaled,
                                   target, additional_forward_args)

        if self.multiplies_by_inputs:
            input_baseline_diffs = tuple(
                input - baseline for input, baseline in zip(inputs, baselines))
            attributions = tuple(input_baseline_diff * grad
                                 for input_baseline_diff, grad in zip(
                                     input_baseline_diffs, grads))
        else:
            attributions = grads

        return _compute_conv_delta_and_format_attrs(
            self,
            return_convergence_delta,
            attributions,
            baselines,
            inputs,
            additional_forward_args,
            target,
            is_inputs_tuple,
        )
Exemple #2
0
    def attribute(
        self,
        inputs: Union[Tensor, Tuple[Tensor, ...]],
        baselines: BaselineType = None,
        target: TargetType = None,
        additional_forward_args: Any = None,
        return_convergence_delta: bool = False,
        attribute_to_layer_input: bool = False,
        custom_attribution_func: Union[None, Callable[..., Tuple[Tensor,
                                                                 ...]]] = None,
    ) -> Union[Tensor, Tuple[Tensor, ...], Tuple[Union[Tensor, Tuple[
            Tensor, ...]], Tensor]]:
        r"""
        Args:

            inputs (tensor or tuple of tensors):  Input for which layer
                        attributions are computed. If forward_func takes a
                        single tensor as input, a single input tensor should be
                        provided. If forward_func takes multiple tensors as input,
                        a tuple of the input tensors should be provided. It is
                        assumed that for all given input tensors, dimension 0
                        corresponds to the number of examples (aka batch size),
                        and if multiple input tensors are provided, the examples
                        must be aligned appropriately.
            baselines (scalar, tensor, tuple of scalars or tensors, optional):
                        Baselines define reference samples that are compared with
                        the inputs. In order to assign attribution scores DeepLift
                        computes the differences between the inputs/outputs and
                        corresponding references.
                        Baselines can be provided as:

                        - a single tensor, if inputs is a single tensor, with
                          exactly the same dimensions as inputs or the first
                          dimension is one and the remaining dimensions match
                          with inputs.

                        - a single scalar, if inputs is a single tensor, which will
                          be broadcasted for each input value in input tensor.

                        - a tuple of tensors or scalars, the baseline corresponding
                          to each tensor in the inputs' tuple can be:

                          - either a tensor with matching dimensions to
                            corresponding tensor in the inputs' tuple
                            or the first dimension is one and the remaining
                            dimensions match with the corresponding
                            input tensor.

                          - or a scalar, corresponding to a tensor in the
                            inputs' tuple. This scalar value is broadcasted
                            for corresponding input tensor.
                        In the cases when `baselines` is not provided, we internally
                        use zero scalar corresponding to each input tensor.

                        Default: None
            target (int, tuple, tensor or list, optional):  Output indices for
                        which gradients are computed (for classification cases,
                        this is usually the target class).
                        If the network returns a scalar value per example,
                        no target index is necessary.
                        For general 2D outputs, targets can be either:

                        - a single integer or a tensor containing a single
                          integer, which is applied to all input examples

                        - a list of integers or a 1D tensor, with length matching
                          the number of examples in inputs (dim 0). Each integer
                          is applied as the target for the corresponding example.

                        For outputs with > 2 dimensions, targets can be either:

                        - A single tuple, which contains #output_dims - 1
                          elements. This target index is applied to all examples.

                        - A list of tuples with length equal to the number of
                          examples in inputs (dim 0), and each tuple containing
                          #output_dims - 1 elements. Each tuple is applied as the
                          target for the corresponding example.

                        Default: None
            additional_forward_args (any, optional): If the forward function
                        requires additional arguments other than the inputs for
                        which attributions should not be computed, this argument
                        can be provided. It must be either a single additional
                        argument of a Tensor or arbitrary (non-tuple) type or a tuple
                        containing multiple additional arguments including tensors
                        or any arbitrary python types. These arguments are provided to
                        forward_func in order, following the arguments in inputs.
                        Note that attributions are not computed with respect
                        to these arguments.
                        Default: None
            return_convergence_delta (bool, optional): Indicates whether to return
                        convergence delta or not. If `return_convergence_delta`
                        is set to True convergence delta will be returned in
                        a tuple following attributions.
                        Default: False
            attribute_to_layer_input (bool, optional): Indicates whether to
                        compute the attribution with respect to the layer input
                        or output. If `attribute_to_layer_input` is set to True
                        then the attributions will be computed with respect to
                        layer input, otherwise it will be computed with respect
                        to layer output.
                        Note that currently it is assumed that either the input
                        or the output of internal layer, depending on whether we
                        attribute to the input or output, is a single tensor.
                        Support for multiple tensors will be added later.
                        Default: False
            custom_attribution_func (callable, optional): A custom function for
                        computing final attribution scores. This function can take
                        at least one and at most three arguments with the
                        following signature:

                        - custom_attribution_func(multipliers)
                        - custom_attribution_func(multipliers, inputs)
                        - custom_attribution_func(multipliers, inputs, baselines)

                        In case this function is not provided, we use the default
                        logic defined as: multipliers * (inputs - baselines)
                        It is assumed that all input arguments, `multipliers`,
                        `inputs` and `baselines` are provided in tuples of same length.
                        `custom_attribution_func` returns a tuple of attribution
                        tensors that have the same length as the `inputs`.
                        Default: None

        Returns:
            **attributions** or 2-element tuple of **attributions**, **delta**:
            - **attributions** (*tensor* or tuple of *tensors*):
                Attribution score computed based on DeepLift's rescale rule with
                respect to layer's inputs or outputs. Attributions will always be the
                same size as the provided layer's inputs or outputs, depending on
                whether we attribute to the inputs or outputs of the layer.
                If the layer input / output is a single tensor, then
                just a tensor is returned; if the layer input / output
                has multiple tensors, then a corresponding tuple
                of tensors is returned.
            - **delta** (*tensor*, returned if return_convergence_delta=True):
                This is computed using the property that the total sum of
                forward_func(inputs) - forward_func(baselines) must equal the
                total sum of the attributions computed based on DeepLift's
                rescale rule.
                Delta is calculated per example, meaning that the number of
                elements in returned delta tensor is equal to the number of
                of examples in input.
                Note that the logic described for deltas is guaranteed
                when the default logic for attribution computations is used,
                meaning that the `custom_attribution_func=None`, otherwise
                it is not guaranteed and depends on the specifics of the
                `custom_attribution_func`.

        Examples::

            >>> # ImageClassifier takes a single input tensor of images Nx3x32x32,
            >>> # and returns an Nx10 tensor of class probabilities.
            >>> net = ImageClassifier()
            >>> # creates an instance of LayerDeepLift to interpret target
            >>> # class 1 with respect to conv4 layer.
            >>> dl = LayerDeepLift(net, net.conv4)
            >>> input = torch.randn(1, 3, 32, 32, requires_grad=True)
            >>> # Computes deeplift attribution scores for conv4 layer and class 3.
            >>> attribution = dl.attribute(input, target=1)
        """
        inputs = _format_input(inputs)
        baselines = _format_baseline(baselines, inputs)
        gradient_mask = apply_gradient_requirements(inputs)
        _validate_input(inputs, baselines)

        baselines = _tensorize_baseline(inputs, baselines)

        main_model_hooks = []
        try:
            main_model_hooks = self._hook_main_model()

            self.model.apply(lambda mod: self._register_hooks(
                mod, attribute_to_layer_input=attribute_to_layer_input))

            additional_forward_args = _format_additional_forward_args(
                additional_forward_args)
            expanded_target = _expand_target(
                target, 2, expansion_type=ExpansionTypes.repeat)
            wrapped_forward_func = self._construct_forward_func(
                self.model,
                (inputs, baselines),
                expanded_target,
                additional_forward_args,
            )

            def chunk_output_fn(
                    out: TensorOrTupleOfTensorsGeneric) -> Sequence:
                if isinstance(out, Tensor):
                    return out.chunk(2)
                return tuple(out_sub.chunk(2) for out_sub in out)

            gradients, attrs = compute_layer_gradients_and_eval(
                wrapped_forward_func,
                self.layer,
                inputs,
                attribute_to_layer_input=attribute_to_layer_input,
                output_fn=lambda out: chunk_output_fn(out),
            )

            attr_inputs = tuple(map(lambda attr: attr[0], attrs))
            attr_baselines = tuple(map(lambda attr: attr[1], attrs))
            gradients = tuple(map(lambda grad: grad[0], gradients))

            if custom_attribution_func is None:
                if self.multiplies_by_inputs:
                    attributions = tuple(
                        (input - baseline) * gradient
                        for input, baseline, gradient in zip(
                            attr_inputs, attr_baselines, gradients))
                else:
                    attributions = gradients
            else:
                attributions = _call_custom_attribution_func(
                    custom_attribution_func, gradients, attr_inputs,
                    attr_baselines)
        finally:
            # remove hooks from all activations
            self._remove_hooks(main_model_hooks)

        undo_gradient_requirements(inputs, gradient_mask)
        return _compute_conv_delta_and_format_attrs(
            self,
            return_convergence_delta,
            attributions,
            baselines,
            inputs,
            additional_forward_args,
            target,
            cast(Union[Literal[True], Literal[False]],
                 len(attributions) > 1),
        )
Exemple #3
0
    def attribute(  # type: ignore
        self,
        inputs: TensorOrTupleOfTensorsGeneric,
        baselines: BaselineType = None,
        target: TargetType = None,
        additional_forward_args: Any = None,
        return_convergence_delta: bool = False,
        custom_attribution_func: Union[None, Callable[..., Tuple[Tensor,
                                                                 ...]]] = None,
    ) -> Union[TensorOrTupleOfTensorsGeneric, Tuple[
            TensorOrTupleOfTensorsGeneric, Tensor]]:
        r"""
        Args:

            inputs (tensor or tuple of tensors):  Input for which
                        attributions are computed. If forward_func takes a single
                        tensor as input, a single input tensor should be provided.
                        If forward_func takes multiple tensors as input, a tuple
                        of the input tensors should be provided. It is assumed
                        that for all given input tensors, dimension 0 corresponds
                        to the number of examples (aka batch size), and if
                        multiple input tensors are provided, the examples must
                        be aligned appropriately.
            baselines (scalar, tensor, tuple of scalars or tensors, optional):
                        Baselines define reference samples that are compared with
                        the inputs. In order to assign attribution scores DeepLift
                        computes the differences between the inputs/outputs and
                        corresponding references.
                        Baselines can be provided as:

                        - a single tensor, if inputs is a single tensor, with
                          exactly the same dimensions as inputs or the first
                          dimension is one and the remaining dimensions match
                          with inputs.

                        - a single scalar, if inputs is a single tensor, which will
                          be broadcasted for each input value in input tensor.

                        - a tuple of tensors or scalars, the baseline corresponding
                          to each tensor in the inputs' tuple can be:

                          - either a tensor with matching dimensions to
                            corresponding tensor in the inputs' tuple
                            or the first dimension is one and the remaining
                            dimensions match with the corresponding
                            input tensor.

                          - or a scalar, corresponding to a tensor in the
                            inputs' tuple. This scalar value is broadcasted
                            for corresponding input tensor.

                        In the cases when `baselines` is not provided, we internally
                        use zero scalar corresponding to each input tensor.

                        Default: None
            target (int, tuple, tensor or list, optional):  Output indices for
                        which gradients are computed (for classification cases,
                        this is usually the target class).
                        If the network returns a scalar value per example,
                        no target index is necessary.
                        For general 2D outputs, targets can be either:

                        - a single integer or a tensor containing a single
                          integer, which is applied to all input examples

                        - a list of integers or a 1D tensor, with length matching
                          the number of examples in inputs (dim 0). Each integer
                          is applied as the target for the corresponding example.

                        For outputs with > 2 dimensions, targets can be either:

                        - A single tuple, which contains #output_dims - 1
                          elements. This target index is applied to all examples.

                        - A list of tuples with length equal to the number of
                          examples in inputs (dim 0), and each tuple containing
                          #output_dims - 1 elements. Each tuple is applied as the
                          target for the corresponding example.

                        Default: None
            additional_forward_args (any, optional): If the forward function
                        requires additional arguments other than the inputs for
                        which attributions should not be computed, this argument
                        can be provided. It must be either a single additional
                        argument of a Tensor or arbitrary (non-tuple) type or a tuple
                        containing multiple additional arguments including tensors
                        or any arbitrary python types. These arguments are provided to
                        forward_func in order, following the arguments in inputs.
                        Note that attributions are not computed with respect
                        to these arguments.
                        Default: None
            return_convergence_delta (bool, optional): Indicates whether to return
                        convergence delta or not. If `return_convergence_delta`
                        is set to True convergence delta will be returned in
                        a tuple following attributions.
                        Default: False
            custom_attribution_func (callable, optional): A custom function for
                        computing final attribution scores. This function can take
                        at least one and at most three arguments with the
                        following signature:

                        - custom_attribution_func(multipliers)
                        - custom_attribution_func(multipliers, inputs)
                        - custom_attribution_func(multipliers, inputs, baselines)

                        In case this function is not provided, we use the default
                        logic defined as: multipliers * (inputs - baselines)
                        It is assumed that all input arguments, `multipliers`,
                        `inputs` and `baselines` are provided in tuples of same
                        length. `custom_attribution_func` returns a tuple of
                        attribution tensors that have the same length as the
                        `inputs`.

                        Default: None

        Returns:
            **attributions** or 2-element tuple of **attributions**, **delta**:
            - **attributions** (*tensor* or tuple of *tensors*):
                Attribution score computed based on DeepLift rescale rule with respect
                to each input feature. Attributions will always be
                the same size as the provided inputs, with each value
                providing the attribution of the corresponding input index.
                If a single tensor is provided as inputs, a single tensor is
                returned. If a tuple is provided for inputs, a tuple of
                corresponding sized tensors is returned.
            - **delta** (*tensor*, returned if return_convergence_delta=True):
                This is computed using the property that
                the total sum of forward_func(inputs) - forward_func(baselines)
                must equal the total sum of the attributions computed
                based on DeepLift's rescale rule.
                Delta is calculated per example, meaning that the number of
                elements in returned delta tensor is equal to the number of
                of examples in input.
                Note that the logic described for deltas is guaranteed when the
                default logic for attribution computations is used, meaning that the
                `custom_attribution_func=None`, otherwise it is not guaranteed and
                depends on the specifics of the `custom_attribution_func`.

        Examples::

            >>> # ImageClassifier takes a single input tensor of images Nx3x32x32,
            >>> # and returns an Nx10 tensor of class probabilities.
            >>> net = ImageClassifier()
            >>> dl = DeepLift(net)
            >>> input = torch.randn(2, 3, 32, 32, requires_grad=True)
            >>> # Computes deeplift attribution scores for class 3.
            >>> attribution = dl.attribute(input, target=3)
        """

        # Keeps track whether original input is a tuple or not before
        # converting it into a tuple.
        is_inputs_tuple = _is_tuple(inputs)

        inputs = _format_tensor_into_tuples(inputs)
        baselines = _format_baseline(baselines, inputs)

        gradient_mask = apply_gradient_requirements(inputs)

        _validate_input(inputs, baselines)

        # set hooks for baselines
        warnings.warn(
            """Setting forward, backward hooks and attributes on non-linear
               activations. The hooks and attributes will be removed
            after the attribution is finished""")
        baselines = _tensorize_baseline(inputs, baselines)
        main_model_hooks = []
        try:
            main_model_hooks = self._hook_main_model()

            self.model.apply(self._register_hooks)

            additional_forward_args = _format_additional_forward_args(
                additional_forward_args)

            expanded_target = _expand_target(
                target, 2, expansion_type=ExpansionTypes.repeat)

            wrapped_forward_func = self._construct_forward_func(
                self.model,
                (inputs, baselines),
                expanded_target,
                additional_forward_args,
            )
            gradients = self.gradient_func(wrapped_forward_func, inputs)
            if custom_attribution_func is None:
                if self.multiplies_by_inputs:
                    attributions = tuple((input - baseline) * gradient
                                         for input, baseline, gradient in zip(
                                             inputs, baselines, gradients))
                else:
                    attributions = gradients
            else:
                attributions = _call_custom_attribution_func(
                    custom_attribution_func, gradients, inputs, baselines)
        finally:
            # Even if any error is raised, remove all hooks before raising
            self._remove_hooks(main_model_hooks)

        undo_gradient_requirements(inputs, gradient_mask)
        return _compute_conv_delta_and_format_attrs(
            self,
            return_convergence_delta,
            attributions,
            baselines,
            inputs,
            additional_forward_args,
            target,
            is_inputs_tuple,
        )
Exemple #4
0
    def attribute(  # type: ignore
        self,
        inputs: Union[Tensor, Tuple[Tensor, ...]],
        baselines: Union[Tensor, Tuple[Tensor, ...]],
        target: TargetType = None,
        additional_forward_args: Any = None,
        return_convergence_delta: bool = False,
        attribute_to_layer_input: bool = False,
    ) -> Union[Tensor, Tuple[Tensor, ...], Tuple[Union[Tensor, Tuple[
            Tensor, ...]], Tensor]]:
        inputs, baselines = _format_input_baseline(inputs, baselines)
        rand_coefficient = torch.tensor(
            np.random.uniform(0.0, 1.0, inputs[0].shape[0]),
            device=inputs[0].device,
            dtype=inputs[0].dtype,
        )

        input_baseline_scaled = tuple(
            _scale_input(input, baseline, rand_coefficient)
            for input, baseline in zip(inputs, baselines))
        grads, _ = compute_layer_gradients_and_eval(
            self.forward_func,
            self.layer,
            input_baseline_scaled,
            target,
            additional_forward_args,
            device_ids=self.device_ids,
            attribute_to_layer_input=attribute_to_layer_input,
        )

        attr_baselines = _forward_layer_eval(
            self.forward_func,
            baselines,
            self.layer,
            additional_forward_args=additional_forward_args,
            device_ids=self.device_ids,
            attribute_to_layer_input=attribute_to_layer_input,
        )

        attr_inputs = _forward_layer_eval(
            self.forward_func,
            inputs,
            self.layer,
            additional_forward_args=additional_forward_args,
            device_ids=self.device_ids,
            attribute_to_layer_input=attribute_to_layer_input,
        )

        if self.multiplies_by_inputs:
            input_baseline_diffs = tuple(
                input - baseline
                for input, baseline in zip(attr_inputs, attr_baselines))
            attributions = tuple(input_baseline_diff * grad
                                 for input_baseline_diff, grad in zip(
                                     input_baseline_diffs, grads))
        else:
            attributions = grads

        return _compute_conv_delta_and_format_attrs(
            self,
            return_convergence_delta,
            attributions,
            baselines,
            inputs,
            additional_forward_args,
            target,
            cast(Union[Literal[True], Literal[False]],
                 len(attributions) > 1),
        )