Exemple #1
0
def test_floating_sphere(reso, depth):
    full_sphere = generate_sphere(radius=1.0, ntheta=2*reso, nphi=4*reso, clip_free_surface=True)
    full_sphere.dofs["Heave"] = full_sphere.faces_normals @ (0, 0, 1)
    problem = RadiationProblem(body=full_sphere, omega=1.0, sea_bottom=-depth)
    mass1, damping1 = Nemoh().solve(problem)

    half_sphere = generate_half_sphere(radius=1.0, ntheta=reso, nphi=4*reso, clip_free_surface=True)
    # half_sphere = full_sphere.extract_faces(np.where(full_sphere.faces_centers[:, 1] > 0)[0])
    two_halves_sphere = ReflectionSymmetry(half_sphere, xOz_Plane)
    two_halves_sphere.dofs["Heave"] = two_halves_sphere.faces_normals @ (0, 0, 1)
    problem = RadiationProblem(body=two_halves_sphere, omega=1.0, sea_bottom=-depth)
    mass2, damping2 = Nemoh().solve(problem)

    quarter_sphere = half_sphere.extract_faces(np.where(half_sphere.faces_centers[:, 0] > 0)[0])
    four_quarter_sphere = ReflectionSymmetry(ReflectionSymmetry(quarter_sphere, yOz_Plane), xOz_Plane)
    four_quarter_sphere.dofs["Heave"] = four_quarter_sphere.faces_normals @ (0, 0, 1)
    problem = RadiationProblem(body=four_quarter_sphere, omega=1.0, sea_bottom=-depth)
    mass3, damping3 = Nemoh().solve(problem)

    clever_sphere = generate_clever_sphere(radius=1.0, ntheta=reso, nphi=4*reso, clip_free_surface=True)
    clever_sphere.dofs['Heave'] = clever_sphere.faces_normals @ (0, 0, 1)
    problem = RadiationProblem(body=clever_sphere, omega=1.0, sea_bottom=-depth)
    mass4, damping4 = Nemoh().solve(problem)

    # (quarter_sphere + half_sphere + full_sphere + clever_sphere).show()

    assert np.isclose(mass1,    mass2,    atol=1e-4*full_sphere.volume*problem.rho)
    assert np.isclose(damping1, damping2, atol=1e-4*full_sphere.volume*problem.rho)
    assert np.isclose(mass1,    mass3,    atol=1e-4*full_sphere.volume*problem.rho)
    assert np.isclose(damping1, damping3, atol=1e-4*full_sphere.volume*problem.rho)
    assert np.isclose(mass1,    mass4,    atol=1e-4*full_sphere.volume*problem.rho)
    assert np.isclose(damping1, damping4, atol=1e-4*full_sphere.volume*problem.rho)
Exemple #2
0
def test_odd_axial_symmetry():
    """Buoy with odd number of slices."""
    def shape(z):
            return 0.1*(-(z+1)**2 + 16)
    buoy = generate_axi_symmetric_body(shape, z_range=np.linspace(-5.0, 0.0, 9), nphi=5)
    buoy.dofs['Heave'] = buoy.faces_normals @ (0, 0, 1)

    problem = RadiationProblem(body=buoy, omega=2.0)
    mass1, damping1 = Nemoh().solve(problem)

    problem = RadiationProblem(body=buoy.as_FloatingBody(), omega=2.0)
    mass2, damping2 = Nemoh().solve(problem)

    assert np.isclose(mass1,    mass2,    atol=1e-4*buoy.volume*problem.rho)
    assert np.isclose(damping1, damping2, atol=1e-4*buoy.volume*problem.rho)
Exemple #3
0
def test_horizontal_cylinder(depth):
    cylinder = generate_open_horizontal_cylinder(length=10.0, radius=1.0, ntheta=10, nx=10)
    cylinder.translate_z(-3.0)
    cylinder.dofs["Heave"] = cylinder.faces_normals @ (0, 0, 1)
    problem = RadiationProblem(body=cylinder, omega=1.0, sea_bottom=-depth)
    mass1, damping1 = Nemoh().solve(problem)

    sym_cylinder = generate_clever_horizontal_cylinder(length=10.0, radius=1.0, ntheta=10, nx=10)
    sym_cylinder.translate_z(-3.0)
    sym_cylinder.dofs["Heave"] = sym_cylinder.faces_normals @ (0, 0, 1)
    problem = RadiationProblem(body=sym_cylinder, omega=1.0, sea_bottom=-depth)
    mass2, damping2 = Nemoh().solve(problem)

    cylinder_volume = 10*1.0*2*np.pi
    assert np.isclose(mass1,    mass2,    atol=1e-4*cylinder_volume*problem.rho)
    assert np.isclose(damping1, damping2, atol=1e-4*cylinder_volume*problem.rho)
Exemple #4
0
def test_immersed_sphere():
    sphere = generate_sphere(radius=1.0, ntheta=20, nphi=40)
    sphere.dofs["Heave"] = sphere.faces_normals @ (0, 0, 1)
    problem = RadiationProblem(body=sphere,
                               free_surface=np.infty,
                               sea_bottom=-np.infty)
    mass, damping = Nemoh().solve(problem)
    assert np.isclose(mass, 2187, atol=1e-3 * sphere.volume * problem.rho)
    assert np.isclose(damping, 0.0, atol=1e-3 * sphere.volume * problem.rho)
Exemple #5
0
def test_multibody():
    sphere = generate_sphere(radius=1.0, ntheta=10, nphi=20)
    sphere.translate_z(-2.0)
    sphere.dofs["Surge"] = sphere.faces_normals @ (1, 0, 0)
    sphere.dofs["Heave"] = sphere.faces_normals @ (0, 0, 1)

    cylinder = generate_horizontal_cylinder(length=5.0,
                                            radius=1.0,
                                            nx=10,
                                            nr=1,
                                            ntheta=10)
    cylinder.translate([-1.0, 3.0, -3.0])
    cylinder.dofs["Surge"] = cylinder.faces_normals @ (1, 0, 0)
    cylinder.dofs["Heave"] = cylinder.faces_normals @ (0, 0, 1)

    both = cylinder + sphere
    # both.show()

    problem = RadiationProblem(body=both,
                               omega=1.0,
                               free_surface=0.0,
                               sea_bottom=-np.infty)
    mass, damping = Nemoh().solve(problem)

    Nemoh_2 = np.array([
        [
            3961.86548, 50.0367661, -3.32347107, 6.36901855E-02, 172.704819,
            19.2018471, -5.67303181, -2.98873377
        ],
        [
            -3.08301544, 5.72392941E-02, 14522.1689, 271.796814, 128.413834,
            6.03351116, 427.167358, 64.1587067
        ],
        [
            161.125534, 17.8332844, 126.392113, 5.88006783, 2242.47412,
            7.17850924, 1.29002571, 0.393169671
        ],
        [
            -5.02560759, -2.75930357, 419.927460, 63.3179016, 1.23501396,
            0.416424811, 2341.57593, 15.8266096
        ],
    ])

    assert np.allclose(mass,
                       Nemoh_2[:, ::2],
                       atol=1e-3 * both.volume * problem.rho)
    assert np.allclose(damping,
                       Nemoh_2[:, 1::2],
                       atol=1e-3 * both.volume * problem.rho)
Exemple #6
0
def test_floating_sphere_finite_depth():
    sphere = generate_sphere(radius=1.0,
                             ntheta=6,
                             nphi=12,
                             clip_free_surface=True)
    sphere.dofs["Heave"] = sphere.faces_normals @ (0, 0, 1)

    problem = RadiationProblem(body=sphere, omega=1.0, sea_bottom=-10.0)
    mass, damping = Nemoh().solve(problem)
    assert np.isclose(mass, 1740.6, atol=1e-3 * sphere.volume * problem.rho)
    assert np.isclose(damping, 380.46, rtol=1e-3 * sphere.volume * problem.rho)

    problem = DiffractionProblem(body=sphere, omega=1.0, sea_bottom=-10.0)
    force = Nemoh().solve(problem)
    assert np.isclose(force, 1749.4 * np.exp(-2.922j) * -1j, rtol=1e-3)
Exemple #7
0
def test_floating_sphere_finite_freq():
    sphere = generate_sphere(radius=1.0,
                             ntheta=6,
                             nphi=12,
                             clip_free_surface=True)
    sphere.dofs["Heave"] = sphere.faces_normals @ (0, 0, 1)

    solver = Nemoh()
    problem = RadiationProblem(body=sphere, omega=1.0, sea_bottom=-np.infty)
    mass, damping = solver.solve(problem, keep_details=True)
    assert np.isclose(mass, 1819.6, atol=1e-3 * sphere.volume * problem.rho)
    assert np.isclose(damping, 379.39, atol=1e-3 * sphere.volume * problem.rho)

    free_surface = generate_free_surface(width=125, length=125, nw=5, nl=5)
    eta = solver.get_free_surface(problem, free_surface, dof="Heave")
    ref = np.array(
        [[
            -0.4340802E-02 - 0.4742809E-03j, -0.7986111E-03 + 0.4840984E-02j,
            0.2214827E-02 + 0.4700642E-02j, -0.7986111E-03 + 0.4840984E-02j,
            -0.4340803E-02 - 0.4742807E-03j
        ],
         [
             -0.7986111E-03 + 0.4840984E-02j, 0.5733187E-02 - 0.2179381E-02j,
             0.9460892E-03 - 0.7079404E-02j, 0.5733186E-02 - 0.2179381E-02j,
             -0.7986110E-03 + 0.4840984E-02j
         ],
         [
             0.2214827E-02 + 0.4700643E-02j, 0.9460892E-03 - 0.7079403E-02j,
             -0.1381670E-01 + 0.6039315E-01j, 0.9460892E-03 - 0.7079405E-02j,
             0.2214827E-02 + 0.4700643E-02j
         ],
         [
             -0.7986111E-03 + 0.4840984E-02j, 0.5733186E-02 - 0.2179381E-02j,
             0.9460891E-03 - 0.7079404E-02j, 0.5733187E-02 - 0.2179380E-02j,
             -0.7986113E-03 + 0.4840984E-02j
         ],
         [
             -0.4340803E-02 - 0.4742807E-03j, -0.7986111E-03 + 0.4840984E-02j,
             0.2214827E-02 + 0.4700643E-02j, -0.7986113E-03 + 0.4840983E-02j,
             -0.4340803E-02 - 0.4742809E-03j
         ]])
    assert np.allclose(eta.reshape((5, 5)), ref, rtol=1e-4)

    problem = DiffractionProblem(body=sphere, omega=1.0, sea_bottom=-np.infty)
    force = Nemoh().solve(problem)
    assert np.isclose(force, 1834.9 * np.exp(-2.933j) * -1j, rtol=1e-3)
Exemple #8
0
def profile_Nemoh(body, omega_range, result_dir, nemoh_bin_dir="~/nemoh/bin", **problem_args):
    """Use Nemoh 2.0 to solve a problem and mesure computation time."""
    problem = RadiationProblem(body=body, omega=0.0, **problem_args)
    export_as_Nemoh_directory(problem, result_dir, omega_range)

    subprocess.run(
        f'cd {result_dir} && ' + os.path.join(nemoh_bin_dir, 'preProc'),
        shell=True,
        stdout=subprocess.PIPE,
    )
    solver_return = subprocess.run(
        f'cd {result_dir} && /usr/bin/time -p ' + os.path.join(nemoh_bin_dir, 'solver'),
        shell=True,
        stdout=subprocess.PIPE,
        stderr=subprocess.PIPE,
        encoding='utf8'
    )

    with open(f'{result_dir}/profile.log', 'w') as log:
        log.write(solver_return.stdout)

    return float(solver_return.stderr.split('\n')[0].strip('real'))
Exemple #9
0
def profile_capytaine(body, omega_range, result_dir, **problem_kwargs):
    if not os.path.isdir(result_dir):
        os.makedirs(result_dir)

    os.environ["MKL_NUM_THREADS"] = "1"

    if logging.root:
        del logging.root.handlers[:]

    logging.basicConfig(
        filename=f"{result_dir}/capytaine.log",
        level=logging.DEBUG,
        format="%(levelname)s:\t%(message)s"
    )

    pr = cProfile.Profile()
    pr.enable() #==Start profiler==

    problems = [RadiationProblem(body=body, omega=omega, **problem_kwargs) for omega in omega_range]
    solver = Nemoh()
    results = [solver.solve(pb) for pb in problems]

    pr.disable() #=================

    results = np.asarray(results)
    np.savetxt(f'{result_dir}/results.csv', results)

    s = io.StringIO()
    sortby = 'time'
    ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
    ps.print_stats()
    profiler_results = s.getvalue()
    with open(f'{result_dir}/profile.log', 'w') as log:
        log.write(profiler_results)

    os.environ["MKL_NUM_THREADS"] = "4"

    return float(profiler_results.split('\n')[0].split('in')[1].strip('seconds\n'))
Exemple #10
0
def test_alien_sphere():
    sphere = generate_sphere(radius=1.0,
                             ntheta=6,
                             nphi=12,
                             clip_free_surface=True)
    sphere.dofs["Heave"] = sphere.faces_normals @ (0, 0, 1)

    problem = RadiationProblem(body=sphere,
                               rho=450.0,
                               g=1.625,
                               omega=1.0,
                               sea_bottom=-np.infty)
    mass, damping = Nemoh().solve(problem)
    assert np.isclose(mass, 515, atol=1e-3 * sphere.volume * problem.rho)
    assert np.isclose(damping, 309, atol=1e-3 * sphere.volume * problem.rho)

    problem = DiffractionProblem(body=sphere,
                                 rho=450.0,
                                 g=1.625,
                                 omega=1.0,
                                 sea_bottom=-np.infty)
    force = Nemoh().solve(problem)
    assert np.isclose(force, 548.5 * np.exp(-2.521j) * -1j, rtol=1e-2)
Exemple #11
0
def test_panels(depth):
    panel = generate_one_sided_rectangle(height=1.0, width=1.0, nh=6, nw=2)
    panel.translate_z(-1.0)
    half_panel = panel.extract_faces(np.where(panel.faces_centers[:, 0] > 0)[0])
    symmetric_panel = ReflectionSymmetry(half_panel, yOz_Plane)
    # symmetric_panel.show()

    # Next lines only to set up LISC in Nemoh's Core...
    problem = RadiationProblem(body=panel, omega=0.1, free_surface=0.0, sea_bottom=-depth)
    Nemoh().solve(problem)

    S1, V1 = panel.build_matrices(panel)
    S2, V2 = symmetric_panel.build_matrices(symmetric_panel)

    # import matplotlib.pyplot as plt
    # plt.matshow(np.real(S1), vmin=-0.1, vmax=0)
    # plt.colorbar()
    # plt.matshow(np.real(S2), vmin=-0.1, vmax=0)
    # plt.colorbar()
    # plt.show()

    assert np.allclose(S1, S2.full_matrix(), atol=1e-5)
    assert np.allclose(V1, V2.full_matrix(), atol=1e-5)
Exemple #12
0
def solve_flap(clever=True, resolution=2):
    """Solve the flap problem for a given resolution.

    Parameters:
    resolution: int
        the number of cells in the mesh will be proportional to this coefficient
    """
    # Load reference range of frequencies
    T_range, _, _ = np.loadtxt(
        os.path.join(os.path.dirname(__file__), "data/flap_mu_nu.tsv")).T

    depth = 10.9

    # Create mesh
    if clever:
        # Use prismatic shape to speed up computations.
        flap = generate_clever_open_rectangular_parallelepiped(
            height=depth,
            width=3.0,
            thickness=0.001,
            nh=int(10 * resolution),
            nw=int(3 * resolution))
    else:
        # Do not use prismatic shape to speed up computations.
        flap = generate_open_rectangular_parallelepiped(height=depth,
                                                        width=3.0,
                                                        thickness=0.001,
                                                        nh=int(10 *
                                                               resolution),
                                                        nw=int(3 * resolution))

    flap.translate_z(-depth)

    # Set oscillation degree of freedom
    flap.dofs["Oscillation"] = np.asarray([
        flap.faces_normals[j, 1] * (flap.faces_centers[j, 2] + 9.4) *
        np.heaviside(flap.faces_centers[j, 2] + 9.4, 0.0)
        for j in range(flap.nb_faces)
    ])

    # Set up problems and initialise solver
    problems = [
        RadiationProblem(body=flap, omega=omega, sea_bottom=-depth)
        for omega in 2 * np.pi / T_range
    ]
    solver = Nemoh()

    # Solve problems
    results = np.asarray(solver.solve_all(problems, processes=1))

    # Create directory to store results
    if not os.path.isdir(result_directory):
        os.mkdir(result_directory)

    # Save result in csv file
    result_file_path = os.path.join(
        os.path.dirname(__file__), "flap_results",
        f"Results_{'clever_' if clever else ''}{30*resolution**2}_cells.csv")
    if os.path.exists(result_file_path):
        LOG.warning(f"Overwriting {result_file_path}")

    np.savetxt(result_file_path, np.asarray(results))
Exemple #13
0
def import_cal_file(filepath):
    """
    Read a Nemoh.cal file and return a list of problems.
    """

    with open(filepath, 'r') as cal_file:

        cal_file.readline() # Unused line.
        rho = float(cal_file.readline().split()[0])
        g = float(cal_file.readline().split()[0])
        depth = float(cal_file.readline().split()[0])
        if depth == 0.0:
            sea_bottom = -np.infty
        else:
            sea_bottom = -depth
        xeff, yeff = (float(x) for x in cal_file.readline().split()[0:2])

        bodies = []

        cal_file.readline() # Unused line.
        nb_bodies = int(cal_file.readline().split()[0])
        for i_body in range(nb_bodies):
            cal_file.readline() # Unused line.
            mesh_file = cal_file.readline().split()[0].strip()
            cal_file.readline() # Number of points, number of panels (unused)

            body = FloatingBody.from_file(
                os.path.join(os.path.dirname(filepath), mesh_file), # mesh path are relative to Nemoh.cal
                'mar')

            nb_dofs = int(cal_file.readline().split()[0])
            for i_dof in range(nb_dofs):
                dof_data = cal_file.readline().split()
                if int(dof_data[0]) == 1:
                    direction = np.array([float(x) for x in dof_data[1:4]])
                    body.add_translation_dof(direction=direction)
                elif int(dof_data[0]) == 2:
                    direction = np.array([float(x) for x in dof_data[1:4]])
                    center_of_mass = np.array([float(x) for x in dof_data[4:7]])
                    body.add_rotation_dof(axis_direction=direction, axis_point=center_of_mass)

            nb_forces = int(cal_file.readline().split()[0])
            for i_force in range(nb_forces):
                force_data = cal_file.readline().split()
                if int(force_data[0]) == 1:
                    direction = np.array([float(x) for x in force_data[1:4]])
                elif int(force_data[0]) == 2:
                    direction = np.array([float(x) for x in force_data[1:4]])
                    center_of_mass = np.array([float(x) for x in force_data[4:7]])
            # TODO: use the generalize forces.

            nb_additional_lines = int(cal_file.readline().split()[0])
            for _ in range(nb_additional_lines):
                cal_file.readline() # The additional lines are just ignored.

            bodies.append(body)

        bodies = CollectionOfFloatingBodies(bodies)

        cal_file.readline() # Unused line.
        frequency_data = cal_file.readline().split()
        omega_range = np.linspace(float(frequency_data[1]), float(frequency_data[2]), int(frequency_data[0]))

        direction_data = cal_file.readline().split()
        direction_range = np.linspace(float(direction_data[1]), float(direction_data[2]), int(direction_data[0]))

        # The options below are not implemented yet.

        cal_file.readline() # Unused line.
        irf_data = cal_file.readline()
        show_pressure = cal_file.readline().split()[0] == "1"
        kochin_data = cal_file.readline().split()
        kochin_range = np.linspace(float(kochin_data[1]), float(kochin_data[2]), int(kochin_data[0]))
        free_surface_data = cal_file.readline().split()

    # Generate Capytaine's problem objects
    env_args = dict(body=bodies, rho=rho, sea_bottom=sea_bottom, g=g)
    problems = []
    for omega in omega_range:
        for direction in direction_range:
            problems.append(DiffractionProblem(angle=direction, omega=omega, **env_args))
        if bodies.nb_dofs > 0:
            problems.append(RadiationProblem(omega=omega, **env_args))

    return problems
Exemple #14
0
# buoy = generate_axi_symmetric_body(
#     profile=[[0, 0, -5], [1, 0, -4], [1.5, 0, -3], [2.0, 0, -2], [1.3, 0, -1], [0, 0, -0.5]]
# )

buoy = generate_axi_symmetric_body(shape,
                                   z_range=np.linspace(-5.0, 0.0, 20),
                                   nphi=20)
# buoy.show()

buoy.dofs["Heave"] = buoy.faces_normals @ (0, 0, 1)

solver = Nemoh()

omega_range = np.linspace(0.1, 5.0, 40)

problems = [
    RadiationProblem(body=buoy, rho=rho, omega=omega) for omega in omega_range
]

results = [solver.solve(pb) for pb in problems]
results = np.array(results)

plt.figure()
plt.plot(omega_range,
         results[:, 0, 0, 0] / (rho * buoy.volume),
         label="Added mass")
plt.plot(omega_range,
         results[:, 1, 0, 0] / (rho * buoy.volume),
         label="Added damping")
plt.legend()
plt.show()
Exemple #15
0
rho = 1000

cylinder = generate_horizontal_cylinder(length=10.0,
                                        radius=1.0,
                                        nx=20,
                                        nr=2,
                                        ntheta=20)
cylinder.translate_z(-2.0)
cylinder.dofs["Heave"] = cylinder.faces_normals @ (0, 0, 1)

solver = Nemoh()

omega_range = np.linspace(0.1, 5.0, 40)

problems = [
    RadiationProblem(body=cylinder, rho=rho, omega=omega)
    for omega in omega_range
]

results = [solver.solve(pb) for pb in problems]

results = np.array(results)
np.savetxt("results.csv", results)

plt.figure()
plt.plot(omega_range,
         results[:, 0, 0, 0] / (rho * cylinder.volume),
         label="Added mass")
plt.plot(omega_range,
         results[:, 1, 0, 0] / (rho * cylinder.volume),
         label="Added damping")