Exemple #1
0
def test_engine_ll_complex_model():
    """
    Test log-likelihood computation under a complex model.
    """

    from cargo.log import get_logger

    get_logger("cargo.llvm.constructs", level="DEBUG")

    # test the model
    from cargo.statistics import (
        Tuple,
        ModelEngine,
        MixedBinomial,
        FiniteMixture,
    )

    model = FiniteMixture(Tuple([(MixedBinomial(), 128)]), 8)
    engine = ModelEngine(model)

    # generate some fake parameters
    sample = numpy.empty((), model.sample_dtype)
    parameter = numpy.empty((), model.parameter_dtype)

    sample["d0"]["n"] = 4
    sample["d0"]["k"] = 1

    parameter["p"] = 1.0 / 8.0
    parameter["c"]["d0"] = 0.5

    assert_almost_equal(engine.ll(parameter, sample), -177.445678223)
Exemple #2
0
def test_finite_mixture_ml():
    """
    Test EM estimation of finite mixture distributions.
    """

    me = ModelEngine(FiniteMixture(MixedBinomial(), 2))

    assert_finite_mixture_ml_ok(me)
Exemple #3
0
def test_finite_mixture_marginal():
    """
    Test finite-mixture marginal computation.
    """

    from cargo.statistics.mixture import marginalize_mixture

    model = FiniteMixture(MixedBinomial(), 2)
    out   = marginalize_mixture(model, [[(0.25, 0.25), (0.75, 0.75)]])

    assert_equal(out.tolist(), [0.625])
Exemple #4
0
def test_finite_mixture_given_binomials():
    """
    Test finite-mixture posterior-parameter computation with binomials.
    """

    model  = FiniteMixture(MixedBinomial(), 2)
    engine = ModelEngine(model)
    out    = engine.given([(0.25, 0.25), (0.75, 0.75)], [(1, 1), (2, 3)])

    assert_equal(out["c"].tolist(), [0.25, 0.75])
    assert_almost_equal(out["p"][0], 0.03571429)
    assert_almost_equal(out["p"][1], 0.9642857)
Exemple #5
0
def test_mixed_binomial_ml():
    """
    Test max-likelihood estimation under the mixed binomial distribution.
    """

    me = ModelEngine(MixedBinomial())

    assert_almost_equal_deep(
        me.ml(
            [[(1, 2), (4, 5)], [(3, 4), (8, 8)]],
            numpy.ones((2, 2)),
        ),
        [5.0 / 7.0, 11.0 / 12.0],
    )
Exemple #6
0
def test_mixed_binomial_ll():
    """
    Test log-probability computation in the mixed binomial distribution.
    """

    me = ModelEngine(MixedBinomial())

    assert_almost_equal(me.ll(0.25, (1, 2)), -0.98082925)
    assert_almost_equal_deep(
        me.ll(
            [[0.25], [0.75]],
            [[(1, 2), (4, 5)], [(3, 4), (8, 8)]],
        ),
        [[-0.98082925, -4.22342160], [-0.86304622, -2.30145658]],
    )
Exemple #7
0
def test_finite_mixture_map():
    """
    Test EM estimation of MAP finite mixture parameters.
    """

    engine = ModelEngine(FiniteMixture(MixedBinomial(), 2))

    (e,) = \
        engine.map(
            [[(1, 1)] * 2],
            [[(7, 8)] * 100 + [(1, 8)] * 200],
            ones((1, 300)),
            )

    assert_almost_equal_deep(
        e[numpy.argsort(e["p"])].tolist(),
        [(1.0 / 3.0, 7.0 / 8.0),
         (2.0 / 3.0, 1.0 / 8.0)],
        places = 4,
        )
Exemple #8
0
def test_mixed_binomial_map():
    """
    Test MAP estimation under the mixed binomial distribution.
    """

    me = ModelEngine(MixedBinomial())

    assert_almost_equal_deep(
        me.map(
            [(1   , 1   ),
             (0.25, 0.75),
             (2   , 3   )],
            [[(1, 2), (2, 2)],
             [(1, 2), (2, 2)],
             [(1, 2), (2, 2)]],
            numpy.ones((3, 2)),
            ) \
            .tolist(),
        [0.75, 0.75, 4.0 / 7.0],
        )