Exemple #1
0
def test_init_parameters(n, lbda, parametrization):
    """ Test the gradient of z. """
    rng = check_random_state(27)
    x, _, _, L, _, A = synthetic_1d_dataset(n=n, s=0.5, snr=0.0, seed=rng)
    n_layers = 5

    # limit the number of inner layers for origtv to avoid long computations
    kwargs = {}
    if parametrization == 'origtv':
        kwargs['n_inner_layers'] = 5

    lista_1 = LearnTVAlgo(algo_type=parametrization, A=A, n_layers=n_layers,
                          max_iter=10, net_solver_type='one_shot', **kwargs)
    lista_1.fit(x, lbda=lbda)
    params = lista_1.export_parameters()

    loss_lista_1 = []
    for n_layer_ in range(n_layers + 1):
        z_1 = lista_1.transform(x=x, lbda=lbda, output_layer=n_layer_)
        loss_lista_1.append(synthesis_primal_obj(z=z_1, A=A, L=L, x=x,
                                                 lbda=lbda))
    loss_lista_1 = np.array(loss_lista_1)

    lista_2 = LearnTVAlgo(algo_type=parametrization, A=A, n_layers=n_layers,
                          initial_parameters=params, max_iter=10, **kwargs)

    loss_lista_2 = []
    for n_layer_ in range(n_layers + 1):
        z_2 = lista_2.transform(x=x, lbda=lbda, output_layer=n_layer_)
        loss_lista_2.append(synthesis_primal_obj(z=z_2, A=A, L=L, x=x,
                                                 lbda=lbda))
    loss_lista_2 = np.array(loss_lista_2)

    np.testing.assert_allclose(z_1, z_2)
    np.testing.assert_allclose(loss_lista_1, loss_lista_2)
Exemple #2
0
    def run_experiment(methods, x_train, x_test, A, lbda, n_layers):
        """ Experiment launcher. """
        print("=" * 80)

        l_diff_loss = []
        for name, type_, kwargs, _, _, _ in methods:
            print(f"[main script] running {name}")
            print("-" * 80)

            algo_type = 'origtv' if ('untrained' in type_) else type_
            network = LearnTVAlgo(algo_type=algo_type,
                                  A=A,
                                  n_layers=n_layers,
                                  max_iter=args.max_iter,
                                  device=device,
                                  verbose=1,
                                  **kwargs)

            if 'untrained' not in type_:
                network.fit(x_train, lbda=lbda)

            diff_loss = compute_prox_tv_errors(network, x_test, lbda)
            l_diff_loss.append(diff_loss)

            print("=" * 80)

        return l_diff_loss
Exemple #3
0
def analysis_learned_taut_string(x_train, x_test, A, D, L, lbda, all_n_layers,
                                 type_=None, max_iter=300, device=None,
                                 net_kwargs=None, verbose=1):
    """ NN-algo solver for analysis TV problem. """
    net_kwargs = dict() if net_kwargs is None else net_kwargs
    params = None
    l_loss = []

    def record_loss(l_loss, u_train, u_test):
        l_loss.append(dict(
            train_loss=analysis_primal_obj(u_train, A, D, x_train, lbda),
            test_loss=analysis_primal_obj(u_test, A, D, x_test, lbda),
        ))
        return l_loss

    _, u0_train, _ = init_vuz(A, D, x_train)
    _, u0_test, _ = init_vuz(A, D, x_test)
    record_loss(l_loss, u0_train, u0_test)

    for n, n_layers in enumerate(all_n_layers):

        # Declare network for the given number of layers. Warm-init the first
        # layers with parameters learned with previous networks if any.
        algo = LearnTVAlgo(algo_type='lpgd_taut_string', A=A,
                           n_layers=n_layers, max_iter=max_iter, device=device,
                           initial_parameters=params, verbose=verbose,
                           **net_kwargs)

        # train
        t0_ = time.time()
        algo.fit(x_train, lbda=lbda)
        delta_ = time.time() - t0_

        # save parameters
        params = algo.export_parameters()

        # get train and test error
        u_train = algo.transform(x_train, lbda, output_layer=n_layers)
        u_test = algo.transform(x_test, lbda, output_layer=n_layers)
        l_loss = record_loss(l_loss, u_train, u_test)

        if verbose > 0:
            train_loss = l_loss[n]['train_loss']
            test_loss = l_loss[n]['test_loss']
            print(f"\r[{algo.name}|layers#{n_layers:3d}] model fitted "
                  f"{delta_:4.1f}s train-loss={train_loss:.4e} "
                  f"test-loss={test_loss:.4e}")

    df = pd.DataFrame(l_loss)
    to_return = (df['train_loss'].values, df['test_loss'].values)

    return to_return
Exemple #4
0
def analysis_learned_algo(x_train, x_test, A, D, L, lbda, all_n_layers, type_,
                          max_iter=300, device=None, net_kwargs=None,
                          verbose=1):
    """ NN-algo solver for analysis TV problem. """
    net_kwargs = dict() if net_kwargs is None else net_kwargs
    params = None

    _, u0_train, _ = init_vuz(A, D, x_train)
    _, u0_test, _ = init_vuz(A, D, x_test)

    train_loss_init = analysis_primal_obj(u0_train, A, D, x_train, lbda)
    test_loss_init = analysis_primal_obj(u0_test, A, D, x_test, lbda)
    train_loss, test_loss = [train_loss_init], [test_loss_init]

    algo_type = 'origtv' if ('untrained' in type_) else type_

    for n_layers in all_n_layers:

        # declare network
        algo = LearnTVAlgo(algo_type=algo_type, A=A, n_layers=n_layers,
                           max_iter=max_iter, device=device,
                           initial_parameters=params, verbose=verbose,
                           **net_kwargs)

        t0_ = time.time()
        if 'untrained' not in type_:
            algo.fit(x_train, lbda=lbda)
        delta_ = time.time() - t0_

        # save parameters
        params = algo.export_parameters()

        # get train and test error
        u_train = algo.transform(x_train, lbda, output_layer=n_layers)
        train_loss_ = analysis_primal_obj(u_train, A, D, x_train, lbda)
        train_loss.append(train_loss_)

        u_test = algo.transform(x_test, lbda, output_layer=n_layers)
        test_loss_ = analysis_primal_obj(u_test, A, D, x_test, lbda)
        test_loss.append(test_loss_)

        if verbose > 0:
            print(f"\r[{algo.name}|layers#{n_layers:3d}] model fitted "
                  f"{delta_:4.1f}s train-loss={train_loss_:.4e} "
                  f"test-loss={test_loss_:.4e}")

    to_return = (np.array(train_loss), np.array(test_loss))

    return to_return
Exemple #5
0
def test_coherence_analysis_loss(parametrization, lbda, n):
    """ Test coherence regarding the loss function between learnt and fixed
    algorithms. """
    rng = check_random_state(None)
    x, _, _, _, D, A = synthetic_1d_dataset(n=n, s=0.5, snr=0.0, seed=rng)
    _, _, z = init_vuz(A, D, x)
    z_ = check_tensor(z, device='cpu')

    cost = analysis_primal_obj(z, A, D, x, lbda=lbda)
    ltv = LearnTVAlgo(algo_type=parametrization,
                      A=A,
                      n_layers=10,
                      device='cpu')
    cost_ref = ltv._loss_fn(x, lbda, z_)

    np.testing.assert_allclose(cost_ref, cost, atol=1e-30)
def test_untrained_analysis_lista(lbda, parametrization, n):
    """ Test the gradient of z. """
    rng = check_random_state(None)
    x, _, _, _, D, A = synthetic_1d_dataset(n=n, s=0.5, snr=0.0, seed=rng)
    v0, u0, _ = init_vuz(A, D, x)

    n_layers = 10
    rho = 1.0
    sigma = 0.5
    L_D = np.linalg.norm(D.dot(D.T), ord=2)
    L_A = np.linalg.norm(A.dot(A.T), ord=2)
    tau = 1.0 / (L_A / 2.0 + sigma * L_D**2)

    lista = LearnTVAlgo(algo_type=parametrization,
                        A=A,
                        n_layers=n_layers,
                        device='cpu')
    loss_untrained_condat = [analysis_primal_obj(u0, A, D, x, lbda)]
    for n_layer_ in range(1, n_layers + 1):
        z = lista.transform(x=x, lbda=lbda, output_layer=n_layer_)
        loss_untrained_condat.append(analysis_primal_obj(z, A, D, x, lbda))
    loss_untrained_condat = np.array(loss_untrained_condat)

    v0, u0, _ = init_vuz(A, D, x, force_numpy=True)
    params = dict(
        grad=lambda u: analysis_primal_grad(u, A, x),
        obj=lambda u: analysis_primal_obj(u, A, D, x, lbda),
        prox=lambda z: pseudo_soft_th_numpy(z, lbda, 1.0 / sigma),
        psi=lambda u: u.dot(D),
        adj_psi=lambda v: v.dot(D.T),
        v0=v0,
        z0=u0,
        lbda=lbda,
        sigma=sigma,
        tau=tau,
        rho=rho,
        max_iter=n_layers,
        early_stopping=False,
        debug=True,
        verbose=0,
    )
    _, _, loss_condat = condatvu(**params)

    np.testing.assert_allclose(loss_condat, loss_untrained_condat, atol=1e-20)
Exemple #7
0
def test_coherence_training_analysis_loss(parametrization, lbda, n):
    """ Test coherence regarding the loss function between learnt and fixed
    algorithms. """
    rng = check_random_state(None)
    x, _, _, _, D, A = synthetic_1d_dataset(n=n, s=0.5, snr=0.0, seed=rng)

    _, u0, _ = init_vuz(A, D, x)
    train_loss = [analysis_primal_obj(u0, A, D, x, lbda)]
    train_loss_ = [analysis_primal_obj(u0, A, D, x, lbda)]

    for n_layers in range(1, 10):
        lista = LearnTVAlgo(algo_type=parametrization,
                            A=A,
                            n_layers=n_layers,
                            max_iter=10)
        lista.fit(x, lbda=lbda)
        train_loss_.append(lista.training_loss_[-1])
        u = lista.transform(x, lbda, output_layer=n_layers)
        train_loss.append(analysis_primal_obj(u, A, D, x, lbda))

    np.testing.assert_allclose(train_loss_, train_loss, atol=1e-30)
def test_untrained_synthesis_lista(lbda, parametrization, n):
    """ Test the gradient of z. """
    rng = check_random_state(None)
    x, _, _, L, D, A = synthetic_1d_dataset(n=n, s=0.5, snr=0.0, seed=rng)
    _, _, z0 = init_vuz(A, D, x)

    n_layers = 10
    LA = L.dot(A)
    step_size = 1.0 / np.linalg.norm(LA, ord=2)**2

    lista = LearnTVAlgo(algo_type=parametrization,
                        A=A,
                        n_layers=n_layers,
                        device='cpu')
    loss_untrained_lista = [
        synthesis_primal_obj(z=z0, A=A, L=L, x=x, lbda=lbda)
    ]
    for n_layer_ in range(1, n_layers + 1):
        z_hat = lista.transform(x=x, lbda=lbda, output_layer=n_layer_)
        loss_untrained_lista.append(
            synthesis_primal_obj(z=z_hat, A=A, L=L, x=x, lbda=lbda))
    loss_untrained_lista = np.array(loss_untrained_lista)

    params = dict(
        grad=lambda z: synthesis_primal_grad(z, A, L, x),
        obj=lambda z: synthesis_primal_obj(z, A, L, x, lbda),
        prox=lambda z, s: pseudo_soft_th_numpy(z, lbda, s),
        x0=z0,
        momentum=None,
        restarting=None,
        max_iter=n_layers,
        step_size=step_size,
        early_stopping=False,
        debug=True,
        verbose=0,
    )
    _, loss_ista = fista(**params)

    np.testing.assert_allclose(loss_ista, loss_untrained_lista, atol=1e-20)