Exemple #1
0
def momentum_correction(options, generalized_coordinates, system_variables,
                        node_masses, outputs, architecture):
    """Compute momentum correction for translational lagrangian dynamics of an open system.
    Here the system is "open" because the main tether mass is changing in time. During reel-out,
    momentum is injected in the system, and during reel-in, momentum is extracted.
    It is assumed that the tether mass is concentrated at the main tether node.

    See "Lagrangian Dynamics for Open Systems", R. L. Greene and J. J. Matese 1981, Eur. J. Phys. 2, 103.

    @return: lagrangian_momentum_correction - correction term that can directly be added to rhs of transl_dyn
    """

    # initialize
    xgcdot = generalized_coordinates['scaled']['xgcdot'].cat
    lagrangian_momentum_correction = cas.DM.zeros(xgcdot.shape)

    use_wound_tether = options['tether']['use_wound_tether']
    if not use_wound_tether:

        for node in range(1, architecture.number_of_nodes):
            label = str(node) + str(architecture.parent_map[node])
            mass = node_masses['m' + label]
            mass_flow = tools.time_derivative(mass, system_variables,
                                              architecture)

            # velocity of the mass particles leaving the system
            velocity = system_variables['SI']['xd']['dq' + label]
            # see formula in reference
            lagrangian_momentum_correction += mass_flow * cas.mtimes(
                velocity.T, cas.jacobian(velocity, xgcdot)).T

    return lagrangian_momentum_correction
Exemple #2
0
def get_induced_velocity_at_kite(model_options, variables, parameters,
                                 architecture, kite, outputs):

    lin_params = parameters['lin']

    var_sym = {}
    var_sym_cat = []
    var_actual_cat = []
    for var_type in variables.keys():
        var_sym[var_type] = variables[var_type](cas.SX.sym(
            var_type, (variables[var_type].cat.shape)))
        var_sym_cat = cas.vertcat(var_sym_cat, var_sym[var_type].cat)
        var_actual_cat = cas.vertcat(var_actual_cat, variables[var_type].cat)

    columnized_list = outputs['vortex']['filament_list']
    filament_list = vortex_filament_list.decolumnize(model_options,
                                                     architecture,
                                                     columnized_list)
    uind_sym = vortex_flow.get_induced_velocity_at_kite(
        model_options, filament_list, variables, architecture, kite)
    jac_sym = cas.jacobian(uind_sym, var_sym_cat)

    uind_fun = cas.Function('uind_fun', [var_sym_cat], [uind_sym])
    jac_fun = cas.Function('jac_fun', [var_sym_cat], [jac_sym])

    slope = jac_fun(lin_params)
    const = uind_fun(lin_params)

    uind_lin = cas.mtimes(slope, var_actual_cat) + const

    return uind_lin
Exemple #3
0
def time_derivative(expr, variables, architecture):

    # notice that the the chain rule
    # df/dt = partial f/partial t
    #       + (partial f/partial x1)(partial x1/partial t)
    #       + (partial f/partial x2)(partial x2/partial t)...
    # doesn't care about the scaling of the component functions, as long as
    # the units of (partial xi) will cancel

    # it is here assumed that (partial f/partial t) = 0.

    vars_scaled = variables['scaled']
    deriv = 0.

    # (partial f/partial xi) for variables with trivial derivatives
    deriv_vars = struct_op.subkeys(vars_scaled, 'xddot')
    for deriv_name in deriv_vars:

        deriv_type = struct_op.get_variable_type(variables['SI'], deriv_name)

        var_name = deriv_name[1:]
        var_type = struct_op.get_variable_type(variables['SI'], var_name)

        q_sym = vars_scaled[var_type, var_name]
        dq_sym = vars_scaled[deriv_type, deriv_name]
        deriv += cas.mtimes(cas.jacobian(expr, q_sym), dq_sym)

    # (partial f/partial xi) for kite rotation matrices
    kite_nodes = architecture.kite_nodes
    for kite in kite_nodes:
        parent = architecture.parent_map[kite]

        r_name = 'r{}{}'.format(kite, parent)
        kite_has_6dof = r_name in struct_op.subkeys(vars_scaled, 'xd')
        if kite_has_6dof:
            r_kite = vars_scaled['xd', r_name]
            dcm_kite = cas.reshape(r_kite, (3, 3))

            omega = vars_scaled['xd', 'omega{}{}'.format(kite, parent)]

            dexpr_dr = cas.jacobian(expr, r_kite)
            dr_dt = cas.reshape(
                cas.mtimes(vect_op.skew(omega), cas.inv(dcm_kite.T)), (9, 1))
            deriv += cas.mtimes(dexpr_dr, dr_dt)

    return deriv
Exemple #4
0
    def __poly_coeffs(self):
        """Compute coefficients of interpolating polynomials and their derivatives
        """

        # discretization info
        nk = self.__n_k
        d = self.__d

        # choose collocation points
        tau_root = cas.vertcat(0.0, cas.collocation_points(d, self.__scheme))

        # coefficients of the collocation equation
        coeff_collocation = np.zeros((d + 1, d + 1))

        # coefficients of the continuity equation
        coeff_continuity = np.zeros(d + 1)

        # dimensionless time inside one control interval
        tau = cas.SX.sym('tau')

        # all collocation time points
        t = np.zeros((nk, d + 1))
        for k in range(nk):
            for j in range(d + 1):
                t[k, j] = (k + tau_root[j])

        # for all collocation points
        ls = []
        for j in range(d + 1):
            # construct lagrange polynomials to get the polynomial basis at the
            # collocation point
            l = 1
            for r in range(d + 1):
                if r != j:
                    l *= (tau - tau_root[r]) / (tau_root[j] - tau_root[r])
            lfcn = cas.Function('lfcn', [tau], [l])
            ls = cas.vertcat(ls, l)

            # evaluate the polynomial at the final time to get the coefficients of
            # the continuity equation
            coeff_continuity[j] = lfcn([1.0])

            # evaluate the time derivative of the polynomial at all collocation
            # points to get the coefficients of the continuity equation
            tfcn = cas.Function('lfcntan', [tau], [cas.jacobian(l, tau)])
            for r in range(d + 1):
                coeff_collocation[j][r] = tfcn(tau_root[r])

        # interpolating function for all polynomials
        lfcns = cas.Function('lfcns', [tau], [ls])

        self.__coeff_continuity = coeff_continuity
        self.__coeff_collocation = coeff_collocation
        self.__coeff_fun = lfcns

        return None
Exemple #5
0
def create_constraint_outputs(g_list, g_bounds, g_struct, V, P):

    g = g_struct(cas.vertcat(*g_list))
    g_fun = cas.Function('g_fun',[V, P], [g.cat])
    g_jacobian_fun = cas.Function('g_jacobian_fun',[V,P],[g.cat, cas.jacobian(g.cat, V.cat)])

    g_bounds['lb'] = cas.vertcat(*g_bounds['lb'])
    g_bounds['ub'] = cas.vertcat(*g_bounds['ub'])

    return g, g_fun, g_jacobian_fun, g_bounds
Exemple #6
0
def jacobian_dcm(expr, xd_si, variables_scaled, kite, parent):
    """ Differentiate expression w.r.t. kite direct cosine matrix"""

    dcm_si = xd_si['r{}{}'.format(kite, parent)]
    dcm_scaled = variables_scaled['xd', 'r{}{}'.format(kite, parent)]

    jac_dcm = rotation(
            cas.reshape(dcm_si, (3,3)),
            cas.reshape(cas.jacobian(expr, dcm_scaled), (3,3))
    ).T
    return jac_dcm
Exemple #7
0
def sosc_check(health_solver_options, nlp, solution, arg):

    logging.debug('sosc check...')

    V = nlp.V
    P = nlp.P

    V_vals = V(solution['x'])
    lambda_g_vals = solution['lam_g']
    lambda_x_vals = solution['lam_x']
    p_fix_num = nlp.P(arg['p'])

    logging.debug('get constraints...')

    [stacked_cstr_fun, stacked_lam_fun,
     stacked_labels] = collect_equality_and_active_inequality_constraints(
         health_solver_options, nlp, solution, arg)
    relevant_constraints = stacked_cstr_fun(V, P, arg['lbx'], arg['ubx'])

    logging.debug('get jacobian...')

    linearization = cas.jacobian(relevant_constraints, V)
    linearization_fun = cas.Function('linearization_fun', [V, P],
                                     [linearization])
    linearization_eval = np.array(linearization_fun(V_vals, p_fix_num))

    logging.debug('find the null space...')

    pdb.set_trace()

    null = vect_op.null(
        linearization_eval,
        health_solver_options['sosc']['reduced_hessian_null_tol'])

    logging.debug('make lagrangian')

    [lagr_fun, lagr_jacobian_fun,
     lagr_hessian_fun] = generate_lagrangian(health_solver_options, nlp, arg,
                                             solution)
    lagr_hessian = lagr_hessian_fun(V_vals, p_fix_num, lambda_g_vals,
                                    lambda_x_vals)

    logging.debug('get reduced hessian')

    reduced_hessian = cas.mtimes(cas.mtimes(null.T, lagr_hessian), null)

    logging.debug('rank check on reduced hessian')

    full_rank_check(health_solver_options, reduced_hessian, 'reduced hessian',
                    'SOSC')
Exemple #8
0
    def build_integrator(self, options, model):
        print('Building integrator...')

        # get model variables
        variables = model.variables
        # construct the DAE variables
        x = cas.struct_SX([cas.entry('xd', expr = variables['xd'])]) # differential states
        z = cas.struct_SX([cas.entry('xddot', expr = variables['xddot']), # state derivatives
                       cas.entry('xa', expr = variables['xa']), # algebraic variables
                       cas.entry('xl', expr = variables['xl']), # lifted variables
                      ])
        p = cas.struct_SX([cas.entry('u', expr = variables['u']), # dae parameters
                       cas.entry('theta', expr = variables['theta']),
                       cas.entry('phi', expr = model.parameters)])

        # scale xddot with t_f
        time_scaled_variables = scale_xddot(variables)

        # model equations
        alg = model.dynamics(time_scaled_variables, model.parameters)
        ode = variables['xddot']

        # create dae
        dae = {'x': x.cat, 'z': z.cat, 'p': p.cat, 'alg': alg,'ode': ode}
        # system dynamics
        f = cas.Function('f', [x, z, p], [ode, alg], ['x', 'z', 'p'], ['ode', 'alg'])

        # create integrator and rootfinder
        if cas.sprank(cas.jacobian(alg,z)) < z.cat.size()[0]:  # check dae index
            raise ValueError('jacobian of dynamics is structurally rank-deficient: DAE is not of index 1!')
        else:
            # create integrator
            I = cas.integrator('I', options['integrator']['type'], dae, {'tf': 1.0 / self.__N_sim})
            # create rootfinder
            g = cas.Function('g',[z.cat,x.cat,p.cat],[alg])
            G = cas.rootfinder('G', 'newton', g, {'linear_solver': 'csparse'})
            self.__integrator = I
            self.__rootfinder = G
            self.__variables_dict = model.variables_dict
            self.__phi = model.parameters
            self.__dae = dae
            self.__f = f
            self.__x = x
            self.__z = z
            self.__p = p
Exemple #9
0
def licq_check(health_solver_options, nlp, solution, arg):

    V = nlp.V
    P = nlp.P

    p_fix_num = nlp.P(arg['p'])

    [stacked_cstr_fun, stacked_lam_fun,
     stacked_labels] = collect_equality_and_active_inequality_constraints(
         health_solver_options, nlp, solution, arg)

    relevant_constraints = stacked_cstr_fun(V, P, arg['lbx'], arg['ubx'])

    cstr_block = cas.jacobian(relevant_constraints, V)
    cstr_block_fun = cas.Function('cstr_block_fun', [V, P], [cstr_block])

    cstr_block_eval = np.array(cstr_block_fun(V(solution['x']), p_fix_num))

    full_rank_check(health_solver_options, cstr_block_eval, 'constraint block',
                    'LICQ')
Exemple #10
0
def get_jacobian_of_eq_and_active_ineq_constraints(nlp, solution, arg,
                                                   cstr_fun):
    awelogger.logger.info(
        'compute jacobian of equality and active inequality constraints...')

    V = nlp.V
    P = nlp.P

    p_fix_num = nlp.P(arg['p'])

    relevant_constraints = cstr_fun(V, P, arg['lbx'], arg['ubx'])

    cstr_jacobian = cas.jacobian(relevant_constraints, V)
    cstr_jacobian_fun = cas.Function('cstr_jacobian_fun', [V, P],
                                     [cstr_jacobian])

    cstr_jacobian_eval = np.array(
        cstr_jacobian_fun(V(solution['x']), p_fix_num))

    return cstr_jacobian_eval
Exemple #11
0
    def __init__(self, variables, parameters, dynamics, integral_outputs_fun, param = 'sym'):
        """ Constructor.
    
        :type variables: casadi.tools.structure.ssymStruct
        :param variables: model variables
    
        :type parameters: casadi.tools.structure.ssymStruct
        :param parameters: model parameters
    
        :type dynamics: casadi.Function
        :param dynamics: fully implicit dae dynamics
    
        :type integral_outputs_fun: casadi.Function
        :param integral_outputs_fun: quadrature state dynamics
    
        :raises ValueError: if the DAE-index is higher than 1
    
        :rtype: None
        """    

        # construct the DAE variables
        x, z, p = self.__build_dae_variables(variables, parameters, param)

        # model equations
        alg = dynamics(variables, parameters)
        ode = variables['theta','t_f']*variables['xddot']
        quad = variables['theta','t_f']*integral_outputs_fun(variables, parameters)

        # create dae dictionary
        dae = {'x': x, 'z': z, 'p': p, 'alg': alg,'ode': ode, 'quad': quad}

        if cas.sprank(cas.jacobian(alg,z)) < z.cat.size()[0]:  # check dae index
            raise ValueError('jacobian of dynamics is structurally rank-deficient: DAE is not of index 1!')

        self.__x = x
        self.__z = z
        self.__p = p
        self.__dae = dae

        return None
Exemple #12
0
    def __generate_discretization(self, nlp_options, model, formulation):

        awelogger.logger.info('discretize problem... ')

        timer = time.time()
        [
            V, P, Xdot, Xdot_fun, ocp_cstr_list, Outputs, Outputs_fun,
            Integral_outputs, Integral_outputs_fun, time_grids, Collocation,
            Multiple_shooting
        ] = discretization.discretize(nlp_options, model, formulation)
        self.__timings['discretization'] = time.time() - timer

        self.__V = V
        self.__P = P
        self.__Xdot = Xdot
        self.__Xdot_fun = Xdot_fun
        self.__ocp_cstr_list = ocp_cstr_list
        self.__Outputs = Outputs
        self.__Outputs_fun = Outputs_fun
        self.__Integral_outputs = Integral_outputs
        self.__Integral_outputs_fun = Integral_outputs_fun
        self.__n_k = nlp_options['n_k']
        self.__d = nlp_options['collocation']['d']
        self.__options = nlp_options
        self.__discretization = nlp_options['discretization']
        self.__time_grids = time_grids
        self.__Collocation = Collocation
        self.__Multiple_shooting = Multiple_shooting

        self.__g = ocp_cstr_list.get_expression_list('all')
        self.__g_fun = ocp_cstr_list.get_function(nlp_options, V, P, 'all')
        self.__g_jacobian_fun = cas.jacobian(self.__g, V)
        self.__g_bounds = {
            'lb': ocp_cstr_list.get_lb('all'),
            'ub': ocp_cstr_list.get_ub('all')
        }

        return None
Exemple #13
0
def make_kkt_matrix_function(health_solver_options, nlp, solution, arg):

    V = nlp.V
    P = nlp.P

    lam_x_sym = cas.MX.sym('lam_x_sym', nlp.V.shape)
    lam_g_sym = cas.MX.sym('lam_g_sym', nlp.g.shape)

    [stacked_cstr_fun, stacked_lam_fun,
     stacked_labels] = collect_equality_and_active_inequality_constraints(
         health_solver_options, nlp, solution, arg)
    relevant_constraints = stacked_cstr_fun(V, P, arg['lbx'], arg['ubx'])

    [lagr_fun, lagr_jacobian_fun,
     lagr_hessian_fun] = generate_lagrangian(health_solver_options, nlp, arg,
                                             solution)

    lagr_block = lagr_hessian_fun(V, P, lam_g_sym, lam_x_sym)
    constraint_block = cas.jacobian(relevant_constraints, V)

    zeros_block = np.zeros(
        (constraint_block.shape[0], constraint_block.shape[0]))

    # kkt_matrix =
    # nabla^2 lagr  nabla g^top     nabla hA^top
    # nabla g           0               0
    # nabla hA          0               0

    kkt_matrix = cas.horzcat(lagr_block, constraint_block.T)
    kkt_matrix = cas.vertcat(kkt_matrix,
                             cas.horzcat(constraint_block, zeros_block))

    kkt_matrix_fun = cas.Function('kkt_matrix_fun',
                                  [V, P, lam_g_sym, lam_x_sym], [kkt_matrix])

    return kkt_matrix_fun
Exemple #14
0
def licq_check_on_equality_constraints(health_solver_options, nlp, solution,
                                       p_fix_num):

    V = nlp.V
    P = nlp.P

    [equality_constraints, eq_labels,
     eq_fun] = collect_equality_constraints(nlp)

    cstr_block = cas.jacobian(equality_constraints, V)
    cstr_block_fun = cas.Function('cstr_block_fun', [V, P], [cstr_block])

    cstr_block_eval = np.array(cstr_block_fun(V(solution['x']), p_fix_num))

    vect_op.spy(cstr_block_eval)
    poss_trouble_var = np.argmax(np.max(cstr_block_eval, axis=0))
    print(poss_trouble_var)
    print((nlp.V.getCanonicalIndex(poss_trouble_var)))
    print((np.max(cstr_block_eval[:, poss_trouble_var])))

    pdb.set_trace()

    full_rank_check(health_solver_options, cstr_block_eval,
                    'equality constraint block', 'LICQ')
Exemple #15
0
def get_dynamics(options, atmos, wind, architecture, system_variables,
                 system_gc, parameters, outputs):

    parent_map = architecture.parent_map
    number_of_nodes = architecture.number_of_nodes

    # generalized coordinates, velocities and accelerations
    generalized_coordinates = {}
    generalized_coordinates['scaled'] = generate_generalized_coordinates(
        system_variables['scaled'], system_gc)
    generalized_coordinates['SI'] = generate_generalized_coordinates(
        system_variables['SI'], system_gc)

    # -------------------------------
    # mass distribution in the system
    # -------------------------------
    node_masses_si, outputs = mass_comp.generate_m_nodes(
        options, system_variables['SI'], outputs, parameters, architecture)

    # --------------------------------
    # lagrangian
    # --------------------------------

    outputs = energy_comp.energy_outputs(options, parameters, outputs,
                                         node_masses_si,
                                         system_variables['SI'], architecture)
    e_kinetic = sum(outputs['e_kinetic'][nodes]
                    for nodes in list(outputs['e_kinetic'].keys()))
    e_potential = sum(outputs['e_potential'][nodes]
                      for nodes in list(outputs['e_potential'].keys()))

    holonomic_constraints, outputs, g, gdot, gddot = holonomic_comp.generate_holonomic_constraints(
        architecture, outputs, system_variables, parameters, options)

    # lagrangian function
    lag = e_kinetic - e_potential - holonomic_constraints

    # --------------------------------
    # generalized forces in the system
    # --------------------------------

    f_nodes, outputs = forces_comp.generate_f_nodes(options, atmos, wind,
                                                    system_variables['SI'],
                                                    parameters, outputs,
                                                    architecture)
    outputs = forces_comp.generate_tether_moments(options,
                                                  system_variables['SI'],
                                                  system_variables['scaled'],
                                                  holonomic_constraints,
                                                  outputs, architecture)

    cstr_list = mdl_constraint.MdlConstraintList()

    # --------------------------------
    # translational dynamics
    # --------------------------------

    # lhs of lagrange equations
    dlagr_dqdot = cas.jacobian(
        lag, generalized_coordinates['scaled']['xgcdot'].cat).T
    dlagr_dqdot_dt = tools.time_derivative(dlagr_dqdot, system_variables,
                                           architecture)

    dlagr_dq = cas.jacobian(lag,
                            generalized_coordinates['scaled']['xgc'].cat).T

    lagrangian_lhs_translation = dlagr_dqdot_dt - dlagr_dq

    lagrangian_lhs_constraints = holonomic_comp.get_constraint_lhs(
        g, gdot, gddot, parameters)

    # lagrangian momentum correction
    if options['tether']['use_wound_tether']:
        lagrangian_momentum_correction = 0.
    else:
        lagrangian_momentum_correction = momentum_correction(
            options, generalized_coordinates, system_variables, node_masses_si,
            outputs, architecture)

    # rhs of lagrange equations
    lagrangian_rhs_translation = cas.vertcat(
        *[f_nodes['f' + str(n) + str(parent_map[n])] for n in range(1, number_of_nodes)]) + \
                                 lagrangian_momentum_correction
    lagrangian_rhs_constraints = np.zeros(g.shape)

    # scaling
    holonomic_scaling = holonomic_comp.generate_holonomic_scaling(
        options, architecture, system_variables['SI'], parameters)
    node_masses_scaling = mass_comp.generate_m_nodes_scaling(
        options, system_variables['SI'], outputs, parameters, architecture)
    forces_scaling = node_masses_scaling * options['scaling']['other'][
        'g'] * options['model_bounds']['acceleration']['acc_max']

    dynamics_translation = (lagrangian_lhs_translation -
                            lagrangian_rhs_translation) / forces_scaling
    dynamics_translation_cstr = cstr_op.Constraint(expr=dynamics_translation,
                                                   cstr_type='eq',
                                                   name='dynamics_translation')
    cstr_list.append(dynamics_translation_cstr)

    dynamics_constraints = (lagrangian_lhs_constraints -
                            lagrangian_rhs_constraints) / holonomic_scaling
    dynamics_constraint_cstr = cstr_op.Constraint(expr=dynamics_constraints,
                                                  cstr_type='eq',
                                                  name='dynamics_constraint')
    cstr_list.append(dynamics_constraint_cstr)

    # --------------------------------
    # rotational dynamics
    # --------------------------------

    kite_has_6dof = (int(options['kite_dof']) == 6)
    if kite_has_6dof:
        rotation_dynamics_cstr, outputs = generate_rotational_dynamics(
            system_variables, f_nodes, parameters, outputs, architecture)
        cstr_list.append(rotation_dynamics_cstr)

    # --------------------------------
    # trivial kinematics
    # --------------------------------

    for name in system_variables['SI']['xddot'].keys():

        name_in_xd = name in system_variables['SI']['xd'].keys()
        name_in_u = name in system_variables['SI']['u'].keys()

        if name_in_xd:
            trivial_dyn = cas.vertcat(*[
                system_variables['scaled']['xddot', name] -
                system_variables['scaled']['xd', name]
            ])
        elif name_in_u:
            trivial_dyn = cas.vertcat(*[
                system_variables['scaled']['xddot', name] -
                system_variables['scaled']['u', name]
            ])

        if name_in_xd or name_in_u:
            trivial_dyn_cstr = cstr_op.Constraint(expr=trivial_dyn,
                                                  cstr_type='eq',
                                                  name='trivial_' + name)
            cstr_list.append(trivial_dyn_cstr)

    return cstr_list, outputs