Exemple #1
0
def tau_actuator_constraints(ocp, nlp, t, x, u, p, minimal_tau=None):
    nq = nlp.mapping["q"].reduce.len
    q = [nlp.mapping["q"].expand.map(mx[:nq]) for mx in x]
    q_dot = [nlp.mapping["q_dot"].expand.map(mx[nq:]) for mx in x]

    min_bound = []
    max_bound = []

    func = biorbd.to_casadi_func("torqueMax", nlp.model.torqueMax, nlp.q,
                                 nlp.q_dot)
    for i in range(len(u)):
        bound = func(q[i], q_dot[i])
        if minimal_tau:
            min_bound.append(nlp.mapping["tau"].reduce.map(
                if_else(lt(bound[:, 1], minimal_tau), minimal_tau, bound[:,
                                                                         1])))
            max_bound.append(nlp.mapping["tau"].reduce.map(
                if_else(lt(bound[:, 0], minimal_tau), minimal_tau, bound[:,
                                                                         0])))
        else:
            min_bound.append(nlp.mapping["tau"].reduce.map(bound[:, 1]))
            max_bound.append(nlp.mapping["tau"].reduce.map(bound[:, 0]))

    obj = vertcat(*u)
    min_bound = vertcat(*min_bound)
    max_bound = vertcat(*max_bound)

    return (
        vertcat(np.zeros(min_bound.shape),
                np.ones(max_bound.shape) * -np.inf),
        vertcat(obj + min_bound, obj - max_bound),
        vertcat(np.ones(min_bound.shape) * np.inf, np.zeros(max_bound.shape)),
    )
Exemple #2
0
def maximal_tau(nodes: PenaltyNodes, minimal_tau):
    nlp = nodes.nlp
    nq = nlp.mapping["q"].to_first.len
    q = [nlp.mapping["q"].to_second.map(mx[:nq]) for mx in nodes.x]
    qdot = [nlp.mapping["qdot"].to_second.map(mx[nq:]) for mx in nodes.x]

    min_bound = []
    max_bound = []
    func = biorbd.to_casadi_func("torqueMax", nlp.model.torqueMax, nlp.q,
                                 nlp.qdot)
    for n in range(len(nodes.u)):
        bound = func(q[n], qdot[n])
        min_bound.append(nlp.mapping["tau"].to_first.map(
            if_else(lt(bound[:, 1], minimal_tau), minimal_tau, bound[:, 1])))
        max_bound.append(nlp.mapping["tau"].to_first.map(
            if_else(lt(bound[:, 0], minimal_tau), minimal_tau, bound[:, 0])))

    obj = vertcat(*nodes.u)
    min_bound = vertcat(*min_bound)
    max_bound = vertcat(*max_bound)

    return (
        vertcat(np.zeros(min_bound.shape),
                np.ones(max_bound.shape) * -np.inf),
        vertcat(obj + min_bound, obj - max_bound),
        vertcat(np.ones(min_bound.shape) * np.inf, np.zeros(max_bound.shape)),
    )
Exemple #3
0
        def torque_max_from_actuators(
            constraint: Constraint,
            all_pn: PenaltyNodeList,
            min_torque=None,
        ):
            """
            Non linear maximal values of joint torques computed from the torque-position-velocity relationship

            Parameters
            ----------
            constraint: Constraint
                The actual constraint to declare
            all_pn: PenaltyNodeList
                The penalty node elements
            min_torque: float
                Minimum joint torques. This prevent from having too small torques, but introduces an if statement
            """

            # TODO: Add index to select the u (control_idx)
            nlp = all_pn.nlp
            q = [
                nlp.variable_mappings["q"].to_second.map(
                    mx[nlp.states["q"].index, :]) for mx in all_pn.x
            ]
            qdot = [
                nlp.variable_mappings["qdot"].to_second.map(
                    mx[nlp.states["qdot"].index, :]) for mx in all_pn.x
            ]

            if min_torque and min_torque < 0:
                raise ValueError(
                    "min_torque cannot be negative in tau_max_from_actuators")
            func = biorbd.to_casadi_func("torqueMax", nlp.model.torqueMax,
                                         nlp.states["q"].mx,
                                         nlp.states["qdot"].mx)
            constraint.min_bound = np.repeat([0, -np.inf], nlp.controls.shape)
            constraint.max_bound = np.repeat([np.inf, 0], nlp.controls.shape)
            for i in range(len(all_pn.u)):
                bound = func(q[i], qdot[i])
                if min_torque:
                    min_bound = nlp.variable_mappings["tau"].to_first.map(
                        if_else(lt(bound[:, 1], min_torque), min_torque,
                                bound[:, 1]))
                    max_bound = nlp.variable_mappings["tau"].to_first.map(
                        if_else(lt(bound[:, 0], min_torque), min_torque,
                                bound[:, 0]))
                else:
                    min_bound = nlp.variable_mappings["tau"].to_first.map(
                        bound[:, 1])
                    max_bound = nlp.variable_mappings["tau"].to_first.map(
                        bound[:, 0])

                ConstraintFunction.add_to_penalty(
                    all_pn.ocp, all_pn,
                    vertcat(
                        *[all_pn.u[i] + min_bound, all_pn.u[i] - max_bound]),
                    constraint)
Exemple #4
0
        def torque_max_from_q_and_qdot(constraint: Constraint,
                                       all_pn: PenaltyNodeList,
                                       min_torque=None):
            """
            Non linear maximal values of joint torques computed from the torque-position-velocity relationship

            Parameters
            ----------
            constraint: Constraint
                The actual constraint to declare
            all_pn: PenaltyNodeList
                The penalty node elements
            min_torque: float
                Minimum joint torques. This prevent from having too small torques, but introduces an if statement
            """

            nlp = all_pn.nlp
            if min_torque and min_torque < 0:
                raise ValueError(
                    "min_torque cannot be negative in tau_max_from_actuators")

            bound = nlp.model.torqueMax(nlp.states["q"].mx,
                                        nlp.states["qdot"].mx)
            min_bound = BiorbdInterface.mx_to_cx(
                "min_bound",
                nlp.controls["tau"].mapping.to_first.map(bound[1].to_mx()),
                nlp.states["q"],
                nlp.states["qdot"],
            )
            max_bound = BiorbdInterface.mx_to_cx(
                "max_bound",
                nlp.controls["tau"].mapping.to_first.map(bound[0].to_mx()),
                nlp.states["q"],
                nlp.states["qdot"],
            )
            if min_torque:
                min_bound = if_else(lt(min_bound, min_torque), min_torque,
                                    min_bound)
                max_bound = if_else(lt(max_bound, min_torque), min_torque,
                                    max_bound)

            value = vertcat(nlp.controls["tau"].cx + min_bound,
                            nlp.controls["tau"].cx - max_bound)

            n_rows = constraint.rows if constraint.rows else int(
                value.shape[0] / 2)
            constraint.min_bound = [0] * n_rows + [-np.inf] * n_rows
            constraint.max_bound = [np.inf] * n_rows + [0] * n_rows
            return value
Exemple #5
0
    def _get_target_load(self, var: FatigueModel, suffix: str, nlp, controls, index: int):
        if self.model_type() not in nlp.controls:
            raise NotImplementedError(f"Fatigue dynamics without {self.model_type()} controls is not implemented yet")

        val = DynamicsFunctions.get(nlp.controls[f"{self.model_type()}_{suffix}"], controls)[index, :]
        if not self.split_controls:
            if var.scaling < 0:
                val = if_else(lt(val, 0), val, 0)
            else:
                val = if_else(gt(val, 0), val, 0)
        return val / var.scaling
Exemple #6
0
 def apply_dynamics(self, target_load, *states):
     ma, mr, mf = states
     # Implementation of Xia dynamics
     c = if_else(
         lt(ma, target_load),
         if_else(gt(mr, target_load - ma), self.LD * (target_load - ma),
                 self.LD * mr),
         self.LR * (target_load - ma),
     )
     ma_dot = c - self.F * ma
     mr_dot = -c + self.R * mf
     mf_dot = self.F * ma - self.R * mf
     return vertcat(ma_dot, mr_dot, mf_dot)
Exemple #7
0
    def apply_dynamics(self, target_load, *states):
        # Implementation of modified Xia dynamics
        ma, mr, mf_xia, mf_long = states

        c = if_else(
            lt(ma, target_load),
            if_else(gt(mr, target_load - ma), self.LD * (target_load - ma),
                    self.LD * mr),
            self.LR * (target_load - ma),
        )

        fatigue_load = target_load - self.effort_threshold
        fatigue_dyn = self.effort_factor * if_else(gt(fatigue_load, 0),
                                                   1 - mf_long, -mf_long)

        ma_dot = c - self.F * ma - if_else(gt(fatigue_load, 0), fatigue_dyn, 0)
        mr_dot = -c + self.R * mf_xia - if_else(lt(fatigue_load, 0),
                                                fatigue_dyn, 0)
        mf_dot = self.F * ma - self.R * mf_xia
        mf_long_dot = fatigue_dyn + self.stabilization_factor * (
            1 - ma - mr - mf_xia - mf_long)

        return vertcat(ma_dot, mr_dot, mf_dot, mf_long_dot)
Exemple #8
0
        def torque_max_from_actuators(constraint,
                                      ocp,
                                      nlp,
                                      t,
                                      x,
                                      u,
                                      p,
                                      min_torque=None):
            # TODO: Add index to select the u (control_idx)
            nq = nlp.mapping["q"].reduce.len
            q = [nlp.mapping["q"].expand.map(mx[:nq]) for mx in x]
            q_dot = [nlp.mapping["q_dot"].expand.map(mx[nq:]) for mx in x]

            if min_torque and min_torque < 0:
                raise ValueError(
                    "min_torque cannot be negative in tau_max_from_actuators")
            func = biorbd.to_casadi_func("torqueMax", nlp.model.torqueMax,
                                         nlp.q, nlp.q_dot)
            constraint.min_bound = np.repeat([0, -np.inf], nlp.nu)
            constraint.max_bound = np.repeat([np.inf, 0], nlp.nu)
            for i in range(len(u)):
                bound = func(q[i], q_dot[i])
                if min_torque:
                    min_bound = nlp.mapping["tau"].reduce.map(
                        if_else(lt(bound[:, 1], min_torque), min_torque,
                                bound[:, 1]))
                    max_bound = nlp.mapping["tau"].reduce.map(
                        if_else(lt(bound[:, 0], min_torque), min_torque,
                                bound[:, 0]))
                else:
                    min_bound = nlp.mapping["tau"].reduce.map(bound[:, 1])
                    max_bound = nlp.mapping["tau"].reduce.map(bound[:, 0])

                ConstraintFunction.add_to_penalty(
                    ocp, nlp, vertcat(*[u[i] + min_bound, u[i] - max_bound]),
                    constraint)
def xia_model_dynamic(states, controls, parameters, nlp):
    nbq = nlp["model"].nbQ()
    nbqdot = nlp["model"].nbQdot()
    nb_q_qdot = nbq + nbqdot

    q = states[:nbq]
    qdot = states[nbq:nb_q_qdot]
    active_fibers = states[nb_q_qdot:nb_q_qdot + nlp["nbMuscle"]]
    fatigued_fibers = states[nb_q_qdot + nlp["nbMuscle"]:nb_q_qdot +
                             2 * nlp["nbMuscle"]]
    resting_fibers = states[nb_q_qdot + 2 * nlp["nbMuscle"]:]

    residual_tau = controls[:nlp["nbTau"]]
    activation = controls[nlp["nbTau"]:]
    command = MX()

    comp = 0
    for i in range(nlp["model"].nbMuscleGroups()):
        for k in range(nlp["model"].muscleGroup(i).nbMuscles()):
            develop_factor = (
                nlp["model"].muscleGroup(i).muscle(k).characteristics(
                ).fatigueParameters().developFactor().to_mx())
            recovery_factor = (
                nlp["model"].muscleGroup(i).muscle(k).characteristics(
                ).fatigueParameters().recoveryFactor().to_mx())

            command = vertcat(
                command,
                if_else(
                    lt(active_fibers[comp], activation[comp]),
                    (if_else(
                        gt(resting_fibers[comp],
                           activation[comp] - active_fibers[comp]),
                        develop_factor *
                        (activation[comp] - active_fibers[comp]),
                        develop_factor * resting_fibers[comp],
                    )),
                    recovery_factor * (activation[comp] - active_fibers[comp]),
                ),
            )
            comp += 1
    restingdot = -command + Muscles.r * Muscles.R * fatigued_fibers  # todo r=r when activation=0
    activatedot = command - Muscles.F * active_fibers
    fatiguedot = Muscles.F * active_fibers - Muscles.R * fatigued_fibers

    muscles_states = biorbd.VecBiorbdMuscleState(nlp["nbMuscle"])
    for k in range(nlp["nbMuscle"]):
        muscles_states[k].setActivation(active_fibers[k])
    # todo fix force max

    muscles_tau = nlp["model"].muscularJointTorque(muscles_states, q,
                                                   qdot).to_mx()
    # todo get muscle forces and multiply them by activate [k] and same as muscularJointTorque
    tau = muscles_tau + residual_tau
    dxdt = MX(nlp["nx"], nlp["ns"])

    if "external_forces" in nlp:
        for i, f_ext in enumerate(nlp["external_forces"]):
            qddot = biorbd.Model.ForwardDynamics(nlp["model"], q, qdot, tau,
                                                 f_ext).to_mx()
            dxdt[:, i] = vertcat(qdot, qddot, activatedot, fatiguedot,
                                 restingdot)
    else:
        qddot = biorbd.Model.ForwardDynamics(nlp["model"], q, qdot,
                                             tau).to_mx()
        dxdt = vertcat(qdot, qddot, activatedot, fatiguedot, restingdot)

    return dxdt
Exemple #10
0
def if_less(a, b, if_result, else_result):
    return ca.if_else(ca.lt(a, b), if_result, else_result)