Exemple #1
1
    def __new__(cls, name, bases, attrs):
        # move column definitions into columns dict
        # and set default column names
        column_dict = OrderedDict()
        primary_keys = OrderedDict()
        pk_name = None

        # get inherited properties
        inherited_columns = OrderedDict()
        for base in bases:
            for k, v in getattr(base, '_defined_columns', {}).items():
                inherited_columns.setdefault(k, v)

        # short circuit __abstract__ inheritance
        is_abstract = attrs['__abstract__'] = attrs.get('__abstract__', False)

        # short circuit __discriminator_value__ inheritance
        attrs['__discriminator_value__'] = attrs.get('__discriminator_value__')

        # TODO __default__ttl__ should be removed in the next major release
        options = attrs.get('__options__') or {}
        attrs['__default_ttl__'] = options.get('default_time_to_live')

        column_definitions = [(k, v) for k, v in attrs.items() if isinstance(v, columns.Column)]
        column_definitions = sorted(column_definitions, key=lambda x: x[1].position)

        is_polymorphic_base = any([c[1].discriminator_column for c in column_definitions])

        column_definitions = [x for x in inherited_columns.items()] + column_definitions
        discriminator_columns = [c for c in column_definitions if c[1].discriminator_column]
        is_polymorphic = len(discriminator_columns) > 0
        if len(discriminator_columns) > 1:
            raise ModelDefinitionException('only one discriminator_column can be defined in a model, {0} found'.format(len(discriminator_columns)))

        if attrs['__discriminator_value__'] and not is_polymorphic:
            raise ModelDefinitionException('__discriminator_value__ specified, but no base columns defined with discriminator_column=True')

        discriminator_column_name, discriminator_column = discriminator_columns[0] if discriminator_columns else (None, None)

        if isinstance(discriminator_column, (columns.BaseContainerColumn, columns.Counter)):
            raise ModelDefinitionException('counter and container columns cannot be used as discriminator columns')

        # find polymorphic base class
        polymorphic_base = None
        if is_polymorphic and not is_polymorphic_base:
            def _get_polymorphic_base(bases):
                for base in bases:
                    if getattr(base, '_is_polymorphic_base', False):
                        return base
                    klass = _get_polymorphic_base(base.__bases__)
                    if klass:
                        return klass
            polymorphic_base = _get_polymorphic_base(bases)

        defined_columns = OrderedDict(column_definitions)

        # check for primary key
        if not is_abstract and not any([v.primary_key for k, v in column_definitions]):
            raise ModelDefinitionException("At least 1 primary key is required.")

        counter_columns = [c for c in defined_columns.values() if isinstance(c, columns.Counter)]
        data_columns = [c for c in defined_columns.values() if not c.primary_key and not isinstance(c, columns.Counter)]
        if counter_columns and data_columns:
            raise ModelDefinitionException('counter models may not have data columns')

        has_partition_keys = any(v.partition_key for (k, v) in column_definitions)

        def _transform_column(col_name, col_obj):
            column_dict[col_name] = col_obj
            if col_obj.primary_key:
                primary_keys[col_name] = col_obj
            col_obj.set_column_name(col_name)
            # set properties
            attrs[col_name] = ColumnDescriptor(col_obj)

        partition_key_index = 0
        # transform column definitions
        for k, v in column_definitions:
            # don't allow a column with the same name as a built-in attribute or method
            if k in BaseModel.__dict__:
                raise ModelDefinitionException("column '{0}' conflicts with built-in attribute/method".format(k))

            # counter column primary keys are not allowed
            if (v.primary_key or v.partition_key) and isinstance(v, columns.Counter):
                raise ModelDefinitionException('counter columns cannot be used as primary keys')

            # this will mark the first primary key column as a partition
            # key, if one hasn't been set already
            if not has_partition_keys and v.primary_key:
                v.partition_key = True
                has_partition_keys = True
            if v.partition_key:
                v._partition_key_index = partition_key_index
                partition_key_index += 1

            overriding = column_dict.get(k)
            if overriding:
                v.position = overriding.position
                v.partition_key = overriding.partition_key
                v._partition_key_index = overriding._partition_key_index
            _transform_column(k, v)

        partition_keys = OrderedDict(k for k in primary_keys.items() if k[1].partition_key)
        clustering_keys = OrderedDict(k for k in primary_keys.items() if not k[1].partition_key)

        if attrs.get('__compute_routing_key__', True):
            key_cols = [c for c in partition_keys.values()]
            partition_key_index = dict((col.db_field_name, col._partition_key_index) for col in key_cols)
            key_cql_types = [c.cql_type for c in key_cols]
            key_serializer = staticmethod(lambda parts, proto_version: [t.to_binary(p, proto_version) for t, p in zip(key_cql_types, parts)])
        else:
            partition_key_index = {}
            key_serializer = staticmethod(lambda parts, proto_version: None)

        # setup partition key shortcut
        if len(partition_keys) == 0:
            if not is_abstract:
                raise ModelException("at least one partition key must be defined")
        if len(partition_keys) == 1:
            pk_name = [x for x in partition_keys.keys()][0]
            attrs['pk'] = attrs[pk_name]
        else:
            # composite partition key case, get/set a tuple of values
            _get = lambda self: tuple(self._values[c].getval() for c in partition_keys.keys())
            _set = lambda self, val: tuple(self._values[c].setval(v) for (c, v) in zip(partition_keys.keys(), val))
            attrs['pk'] = property(_get, _set)

        # some validation
        col_names = set()
        for v in column_dict.values():
            # check for duplicate column names
            if v.db_field_name in col_names:
                raise ModelException("{0} defines the column '{1}' more than once".format(name, v.db_field_name))
            if v.clustering_order and not (v.primary_key and not v.partition_key):
                raise ModelException("clustering_order may be specified only for clustering primary keys")
            if v.clustering_order and v.clustering_order.lower() not in ('asc', 'desc'):
                raise ModelException("invalid clustering order '{0}' for column '{1}'".format(repr(v.clustering_order), v.db_field_name))
            col_names.add(v.db_field_name)

        # create db_name -> model name map for loading
        db_map = {}
        for col_name, field in column_dict.items():
            db_field = field.db_field_name
            if db_field != col_name:
                db_map[db_field] = col_name

        # add management members to the class
        attrs['_columns'] = column_dict
        attrs['_primary_keys'] = primary_keys
        attrs['_defined_columns'] = defined_columns

        # maps the database field to the models key
        attrs['_db_map'] = db_map
        attrs['_pk_name'] = pk_name
        attrs['_dynamic_columns'] = {}

        attrs['_partition_keys'] = partition_keys
        attrs['_partition_key_index'] = partition_key_index
        attrs['_key_serializer'] = key_serializer
        attrs['_clustering_keys'] = clustering_keys
        attrs['_has_counter'] = len(counter_columns) > 0

        # add polymorphic management attributes
        attrs['_is_polymorphic_base'] = is_polymorphic_base
        attrs['_is_polymorphic'] = is_polymorphic
        attrs['_polymorphic_base'] = polymorphic_base
        attrs['_discriminator_column'] = discriminator_column
        attrs['_discriminator_column_name'] = discriminator_column_name
        attrs['_discriminator_map'] = {} if is_polymorphic_base else None

        # setup class exceptions
        DoesNotExistBase = None
        for base in bases:
            DoesNotExistBase = getattr(base, 'DoesNotExist', None)
            if DoesNotExistBase is not None:
                break

        DoesNotExistBase = DoesNotExistBase or attrs.pop('DoesNotExist', BaseModel.DoesNotExist)
        attrs['DoesNotExist'] = type('DoesNotExist', (DoesNotExistBase,), {})

        MultipleObjectsReturnedBase = None
        for base in bases:
            MultipleObjectsReturnedBase = getattr(base, 'MultipleObjectsReturned', None)
            if MultipleObjectsReturnedBase is not None:
                break

        MultipleObjectsReturnedBase = MultipleObjectsReturnedBase or attrs.pop('MultipleObjectsReturned', BaseModel.MultipleObjectsReturned)
        attrs['MultipleObjectsReturned'] = type('MultipleObjectsReturned', (MultipleObjectsReturnedBase,), {})

        # create the class and add a QuerySet to it
        klass = super(ModelMetaClass, cls).__new__(cls, name, bases, attrs)

        udts = []
        for col in column_dict.values():
            columns.resolve_udts(col, udts)

        for user_type in set(udts):
            user_type.register_for_keyspace(klass._get_keyspace())

        return klass
Exemple #2
0
    def __new__(cls, name, bases, attrs):
        field_dict = OrderedDict()

        field_defs = [(k.decode('utf-8'), v) for k, v in attrs.items() if isinstance(v, columns.Column)]
        field_defs = sorted(field_defs, key=lambda x: x[1].position)

        def _transform_column(field_name, field_obj):
            field_dict[field_name] = field_obj
            field_obj.set_column_name(field_name)
            attrs[field_name] = models.ColumnDescriptor(field_obj)

        # transform field definitions
        for k, v in field_defs:
            # don't allow a field with the same name as a built-in attribute or method
            if k in BaseUserType.__dict__:
                raise UserTypeDefinitionException("field '{0}' conflicts with built-in attribute/method".format(k))
            _transform_column(k, v)

        # create db_name -> model name map for loading
        db_map = {}
        for field_name, field in field_dict.items():
            db_map[field.db_field_name] = field_name

        attrs['_fields'] = field_dict
        attrs['_db_map'] = db_map

        klass = super(UserTypeMetaClass, cls).__new__(cls, name, bases, attrs)

        return klass
Exemple #3
0
    def __new__(cls, name, bases, attrs):
        field_dict = OrderedDict()

        field_defs = [(k, v) for k, v in attrs.items()
                      if isinstance(v, columns.Column)]
        field_defs = sorted(field_defs, key=lambda x: x[1].position)

        def _transform_column(field_name, field_obj):
            field_dict[field_name] = field_obj
            field_obj.set_column_name(field_name)
            attrs[field_name] = models.ColumnDescriptor(field_obj)

        # transform field definitions
        for k, v in field_defs:
            # don't allow a field with the same name as a built-in attribute or method
            if k in BaseUserType.__dict__:
                raise UserTypeDefinitionException(
                    "field '{0}' conflicts with built-in attribute/method".
                    format(k))
            _transform_column(k, v)

        # create db_name -> model name map for loading
        db_map = {}
        for field_name, field in field_dict.items():
            db_map[field.db_field_name] = field_name

        attrs['_fields'] = field_dict
        attrs['_db_map'] = db_map

        klass = super(UserTypeMetaClass, cls).__new__(cls, name, bases, attrs)

        return klass
Exemple #4
0
    def __new__(cls, name, bases, attrs):
        # move column definitions into columns dict
        # and set default column names
        column_dict = OrderedDict()
        primary_keys = OrderedDict()
        pk_name = None

        # get inherited properties
        inherited_columns = OrderedDict()
        for base in bases:
            for k, v in getattr(base, '_defined_columns', {}).items():
                inherited_columns.setdefault(k, v)

        # short circuit __abstract__ inheritance
        is_abstract = attrs['__abstract__'] = attrs.get('__abstract__', False)

        # short circuit __discriminator_value__ inheritance
        attrs['__discriminator_value__'] = attrs.get('__discriminator_value__')

        # TODO __default__ttl__ should be removed in the next major release
        options = attrs.get('__options__') or {}
        attrs['__default_ttl__'] = options.get('default_time_to_live')

        column_definitions = [(k, v) for k, v in attrs.items() if isinstance(v, columns.Column)]
        column_definitions = sorted(column_definitions, key=lambda x: x[1].position)

        is_polymorphic_base = any([c[1].discriminator_column for c in column_definitions])

        column_definitions = [x for x in inherited_columns.items()] + column_definitions
        discriminator_columns = [c for c in column_definitions if c[1].discriminator_column]
        is_polymorphic = len(discriminator_columns) > 0
        if len(discriminator_columns) > 1:
            raise ModelDefinitionException('only one discriminator_column can be defined in a model, {0} found'.format(len(discriminator_columns)))

        if attrs['__discriminator_value__'] and not is_polymorphic:
            raise ModelDefinitionException('__discriminator_value__ specified, but no base columns defined with discriminator_column=True')

        discriminator_column_name, discriminator_column = discriminator_columns[0] if discriminator_columns else (None, None)

        if isinstance(discriminator_column, (columns.BaseContainerColumn, columns.Counter)):
            raise ModelDefinitionException('counter and container columns cannot be used as discriminator columns')

        # find polymorphic base class
        polymorphic_base = None
        if is_polymorphic and not is_polymorphic_base:
            def _get_polymorphic_base(bases):
                for base in bases:
                    if getattr(base, '_is_polymorphic_base', False):
                        return base
                    klass = _get_polymorphic_base(base.__bases__)
                    if klass:
                        return klass
            polymorphic_base = _get_polymorphic_base(bases)

        defined_columns = OrderedDict(column_definitions)

        # check for primary key
        if not is_abstract and not any([v.primary_key for k, v in column_definitions]):
            raise ModelDefinitionException("At least 1 primary key is required.")

        counter_columns = [c for c in defined_columns.values() if isinstance(c, columns.Counter)]
        data_columns = [c for c in defined_columns.values() if not c.primary_key and not isinstance(c, columns.Counter)]
        if counter_columns and data_columns:
            raise ModelDefinitionException('counter models may not have data columns')

        has_partition_keys = any(v.partition_key for (k, v) in column_definitions)

        def _transform_column(col_name, col_obj):
            column_dict[col_name] = col_obj
            if col_obj.primary_key:
                primary_keys[col_name] = col_obj
            col_obj.set_column_name(col_name)
            # set properties
            attrs[col_name] = ColumnDescriptor(col_obj)

        partition_key_index = 0
        # transform column definitions
        for k, v in column_definitions:
            # don't allow a column with the same name as a built-in attribute or method
            if k in BaseModel.__dict__:
                raise ModelDefinitionException("column '{0}' conflicts with built-in attribute/method".format(k))

            # counter column primary keys are not allowed
            if (v.primary_key or v.partition_key) and isinstance(v, columns.Counter):
                raise ModelDefinitionException('counter columns cannot be used as primary keys')

            # this will mark the first primary key column as a partition
            # key, if one hasn't been set already
            if not has_partition_keys and v.primary_key:
                v.partition_key = True
                has_partition_keys = True
            if v.partition_key:
                v._partition_key_index = partition_key_index
                partition_key_index += 1

            overriding = column_dict.get(k)
            if overriding:
                v.position = overriding.position
                v.partition_key = overriding.partition_key
                v._partition_key_index = overriding._partition_key_index
            _transform_column(k, v)

        partition_keys = OrderedDict(k for k in primary_keys.items() if k[1].partition_key)
        clustering_keys = OrderedDict(k for k in primary_keys.items() if not k[1].partition_key)

        if attrs.get('__compute_routing_key__', True):
            key_cols = [c for c in partition_keys.values()]
            partition_key_index = dict((col.db_field_name, col._partition_key_index) for col in key_cols)
            key_cql_types = [c.cql_type for c in key_cols]
            key_serializer = staticmethod(lambda parts, proto_version: [t.to_binary(p, proto_version) for t, p in zip(key_cql_types, parts)])
        else:
            partition_key_index = {}
            key_serializer = staticmethod(lambda parts, proto_version: None)

        # setup partition key shortcut
        if len(partition_keys) == 0:
            if not is_abstract:
                raise ModelException("at least one partition key must be defined")
        if len(partition_keys) == 1:
            pk_name = [x for x in partition_keys.keys()][0]
            attrs['pk'] = attrs[pk_name]
        else:
            # composite partition key case, get/set a tuple of values
            _get = lambda self: tuple(self._values[c].getval() for c in partition_keys.keys())
            _set = lambda self, val: tuple(self._values[c].setval(v) for (c, v) in zip(partition_keys.keys(), val))
            attrs['pk'] = property(_get, _set)

        # some validation
        col_names = set()
        for v in column_dict.values():
            # check for duplicate column names
            if v.db_field_name in col_names:
                raise ModelException("{0} defines the column '{1}' more than once".format(name, v.db_field_name))
            if v.clustering_order and not (v.primary_key and not v.partition_key):
                raise ModelException("clustering_order may be specified only for clustering primary keys")
            if v.clustering_order and v.clustering_order.lower() not in ('asc', 'desc'):
                raise ModelException("invalid clustering order '{0}' for column '{1}'".format(repr(v.clustering_order), v.db_field_name))
            col_names.add(v.db_field_name)

        # create db_name -> model name map for loading
        db_map = {}
        for col_name, field in column_dict.items():
            db_field = field.db_field_name
            if db_field != col_name:
                db_map[db_field] = col_name

        # add management members to the class
        attrs['_columns'] = column_dict
        attrs['_primary_keys'] = primary_keys
        attrs['_defined_columns'] = defined_columns

        # maps the database field to the models key
        attrs['_db_map'] = db_map
        attrs['_pk_name'] = pk_name
        attrs['_dynamic_columns'] = {}

        attrs['_partition_keys'] = partition_keys
        attrs['_partition_key_index'] = partition_key_index
        attrs['_key_serializer'] = key_serializer
        attrs['_clustering_keys'] = clustering_keys
        attrs['_has_counter'] = len(counter_columns) > 0

        # add polymorphic management attributes
        attrs['_is_polymorphic_base'] = is_polymorphic_base
        attrs['_is_polymorphic'] = is_polymorphic
        attrs['_polymorphic_base'] = polymorphic_base
        attrs['_discriminator_column'] = discriminator_column
        attrs['_discriminator_column_name'] = discriminator_column_name
        attrs['_discriminator_map'] = {} if is_polymorphic_base else None

        # setup class exceptions
        DoesNotExistBase = None
        for base in bases:
            DoesNotExistBase = getattr(base, 'DoesNotExist', None)
            if DoesNotExistBase is not None:
                break

        DoesNotExistBase = DoesNotExistBase or attrs.pop('DoesNotExist', BaseModel.DoesNotExist)
        attrs['DoesNotExist'] = type('DoesNotExist', (DoesNotExistBase,), {})

        MultipleObjectsReturnedBase = None
        for base in bases:
            MultipleObjectsReturnedBase = getattr(base, 'MultipleObjectsReturned', None)
            if MultipleObjectsReturnedBase is not None:
                break

        MultipleObjectsReturnedBase = MultipleObjectsReturnedBase or attrs.pop('MultipleObjectsReturned', BaseModel.MultipleObjectsReturned)
        attrs['MultipleObjectsReturned'] = type('MultipleObjectsReturned', (MultipleObjectsReturnedBase,), {})

        # create the class and add a QuerySet to it
        klass = super(ModelMetaClass, cls).__new__(cls, name, bases, attrs)

        udts = []
        for col in column_dict.values():
            columns.resolve_udts(col, udts)

        for user_type in set(udts):
            user_type.register_for_keyspace(klass._get_keyspace())

        return klass
Exemple #5
0
    def select_from_table(self, table_name, limit=10000, **kwargs):
        result = []
        schema = self.schema_for_table(table_name)

        partition_names = []
        for column in schema.partition_key:
            partition_names.append(column.name)

        # Sort kwargs so they are in the same order as the columns.
        ordered_kwargs = OrderedDict()
        for name in self._models[table_name]._columns.keys():
            for key, value in kwargs.items():
                if key.split('__')[0] == name and value is not None:
                    ordered_kwargs[key] = value

        # Convert arguments to filters
        partitions = [[]]
        filters = []
        for key, value in ordered_kwargs.items():
            key_value = key.split('__')[0]
            operator = None if len(
                key.split('__')) == 1 else key.split('__')[1]

            if key_value in partition_names:
                if operator == 'in':
                    original_partitions = list(partitions)
                    partitions = []
                    for _ in range(len(value)):
                        for element in original_partitions:
                            partitions.append(list(element))
                    for multiplier in range(len(value)):
                        for index in range(len(original_partitions)):
                            partitions[multiplier * len(original_partitions) +
                                       index].append(value[multiplier])
                else:
                    for partition in partitions:
                        partition.append(value)

            filters.append(self.filter_for_argument(key, value))

        if len(partitions[0]) == 0:
            partitions = self.cluster.database[
                self.keyspace][table_name].keys()

        candidate_elements = []
        for partition in partitions:
            for key, row in self.cluster.database[self.keyspace][table_name][
                    tuple(partition)].items():
                does_match = True
                for filter in filters:
                    if not filter(row[1]):
                        does_match = False
                        break
                if not does_match:
                    continue
                candidate_elements.append((partition, key))

        # To reverse, they all need to agree. This might not work with compound clustering keys, but we really
        # shouldn't use those anyways
        is_reversed = True
        for column in schema.primary_key:
            if column in schema.partition_key:
                continue
            if not column.is_reversed:
                is_reversed = False
        candidate_elements.sort(reverse=is_reversed)

        for candidate in candidate_elements:
            element = self.cluster.database[self.keyspace][table_name][tuple(
                candidate[0])][candidate[1]]
            deadline = element[0]
            if deadline is None or deadline > time.time():
                result.append(element[1])
                limit -= 1
                if limit <= 0:
                    return result
            else:
                del self.cluster.database[self.keyspace][table_name][tuple(
                    candidate[0])][candidate[1]]
        return result