Exemple #1
0
def _handle_data(context, data):
    s1 = context.asset
    prices = data.history(s1,
                          bar_count=context.BARS,
                          fields=['price', 'open', 'high', 'low', 'close'],
                          frequency=context.frequency)
    analysis = pd.DataFrame(index=prices.index)

    # SMA FAST
    analysis['sma_f'] = ta.SMA(prices.close.as_matrix(), context.SMA_FAST)
    # SMA SLOW
    analysis['sma_s'] = ta.SMA(prices.close.as_matrix(), context.SMA_SLOW)
    # SMA FAST over SLOW Crossover
    analysis['sma_test'] = np.where(analysis.sma_f > analysis.sma_s, 1, 0)

    # Save the prices and analysis to send to analyze
    context.prices = prices
    context.analysis = analysis
    context.price = data.current(context.asset, 'price')

    record(price=data.current(context.asset, 'price'),
           cash=context.portfolio.cash,
           short_mavg=analysis['sma_f'],
           long_mavg=analysis['sma_s'])

    makeOrders(context, analysis)
Exemple #2
0
    def _set_current_fields(self, context, data):
        try:
            # In live mode, "volume", "close" and "price" are the only available fields.
            # In live mode, "volume" returns the last 24 hour trading volume.

            #  Update actual self.state.price
            if not self.is_backtest:
                self.state.current = data.current(
                    assets=self.state.asset, fields=["volume", "close", "price"]
                )
            else:
                self.state.current = data.current(
                    assets=self.state.asset,
                    fields=["open", "high", "low", "volume", "close", "price"],
                )
            self.state.price = self.state.current.price
            record(
                price=self.state.price,
                cash=context.portfolio.cash,
                volume=self.state.current.volume,
            )
            self.state.dump_to_context(context)
            return True

        except exchange_errors.NoValueForField as e:
            self.log.warning(e)
            self.log.warning(f"Skipping trade period: {e}")
            return False

        except KeyError:
            self.log.warning("Error when getting current fields")
            return False
Exemple #3
0
def handle_data(context, data):
    last3 = []

    last3orig = data.history(context.asset,
                             'price',
                             bar_count=3,
                             frequency='1T')
    last3[:] = last3orig

    if context.portfolio.positions[context.asset].amount == 0:
        if sorted(last3) == last3:
            print("here")
            cash = context.portfolio.cash
            context.cur_price = data.current(context.asset, 'price')
            buy_amount = int(
                min(cash // context.cur_price, 100000 // context.cur_price))
            order(context.asset, buy_amount)

    else:
        if data.current(context.asset, 'price') < .9 * context.cur_price:
            num = context.portfolio.positions[context.asset].amount
            order(context.asset, -num)

        if sorted(last3) != last3 and (context.cur_price *
                                       1.15) < data.current(
                                           context.asset, 'price'):
            print("HERE")
            num = context.portfolio.positions[context.asset].amount
            order(context.asset, -num)

    record(btc=data.current(context.asset, 'price'))
Exemple #4
0
    def trade(self, context, data):
        """
        This is the brain of the agent and it is what carries out trades
        """

        # Get current price
        price = data.current(self.market, 'price')

        # Check if price is ok
        if price is np.nan:
            self.logger.warn('No pricing data')
            return

        record(price=price)

        # Activate possible stop losses
        # if self.order(self.stop_loss, context, data):
        #     return

        # Check current orders for this market
        # if len(get_open_orders(self.market)) > 0:
        #     self.logger.info('Skipping frame until all open orders execute')
        #     return

        # if not data.can_trade(self.market):
        #     self.logger.warn("Can't trade!")
        #     return

        # Call strategy
        self.order(self.strategy, context, data)
Exemple #5
0
def _handle_data(context, data):
    s1 = context.asset
    prices = data.history(
        s1,
        bar_count=context.BARS,
        fields=["price", "open", "high", "low", "price"],
        frequency=context.frequency,
    )
    analysis = pd.DataFrame(index=prices.index)

    # SMA FAST
    analysis["sma_f"] = ta.SMA(prices.close.as_matrix(), context.SMA_FAST)
    # SMA SLOW
    analysis["sma_s"] = ta.SMA(prices.close.as_matrix(), context.SMA_SLOW)
    # SMA FAST over SLOW Crossover
    analysis["sma_test"] = np.where(analysis.sma_f > analysis.sma_s, 1, 0)

    # Save the prices and analysis to send to analyze
    context.prices = prices
    context.analysis = analysis
    context.price = data.current(context.asset, "price")

    record(
        price=data.current(context.asset, "price"),
        cash=context.portfolio.cash,
        short_mavg=analysis["sma_f"],
        long_mavg=analysis["sma_s"],
    )

    makeOrders(context, analysis)
Exemple #6
0
    def record_data(self, context):
        """Records external data for the current algo iteration

        Data from the external dataset is recorded to Catalyst's
        persistant context object along with market data

        Arguments:
            context {pd.Dataframe} --  Catalyst peristent algo context object

        Returns:
            dict -- Dict of column keys and data recored to catalyst
        """
        date = context.blotter.current_dt.date()
        record_payload = {}

        if date not in self.df.index:
            raise ValueError("No {} data found for {}".format(self.name, date))

        for k in self.columns:
            current_val = self.column_by_date(k, date)
            # TODO: some dates are doubled due to smaller date steps
            if isinstance(current_val, pd.Series):
                current_val = current_val.mean()
            record_payload[k] = current_val

        self.log.debug("Recording {}".format(record_payload))
        record(**record_payload)
        return record_payload
Exemple #7
0
def handle_data(context, data):
    look_back_window = 20
    # Skip bars until we can calculate absolute momentum
    context.i += 1
    if context.i < look_back_window:
        return

    btc_history = data.history(context.asset,
                               'price',
                               bar_count=look_back_window,
                               frequency='1D')

    percentage_change = btc_history.pct_change(look_back_window - 1)[-1] * 100
    price = data.current(context.asset, 'price')

    # Trading logic

    # Buy if the percentage change > 0
    if percentage_change > 0:
        if not context.holding:
            order_target_percent(context.asset, 1)
            context.holding = True
    # Sell otherwise
    else:
        if context.holding:
            order_target_percent(context.asset, 0)
            context.holding = False

    record(price=price,
           cash=context.portfolio.cash,
           percent_change=percentage_change)
Exemple #8
0
def handle_data(context, data):
    log.info('handling bar: {}'.format(data.current_dt))

    price = data.current(context.asset, 'close')
    log.info('got price {price}'.format(price=price))

    prices = data.history(
        context.asset,
        fields='price',
        bar_count=20,
        frequency='30T'
    )
    last_traded = prices.index[-1]
    log.info('last candle date: {}'.format(last_traded))

    rsi = talib.RSI(prices.values, timeperiod=14)[-1]
    log.info('got rsi: {}'.format(rsi))

    # If base_price is not set, we use the current value. This is the
    # price at the first bar which we reference to calculate price_change.
    if context.base_price is None:
        context.base_price = price

    price_change = (price - context.base_price) / context.base_price
    cash = context.portfolio.cash

    # Now that we've collected all current data for this frame, we use
    # the record() method to save it. This data will be available as
    # a parameter of the analyze() function for further analysis.
    record(
        price=price,
        price_change=price_change,
        cash=cash
    )
 def run(self):
     ts = self.context.cmx_signal.ts
     if ts is None:
         return
     if self._last_update_ts is None or ts - self._last_update_ts >= self.refresh_tdelta:
         record(
             cmx_signal=self.context.cmx_signal.signal,
             cmx_signal_mean=self.context.cmx_signal.mean,
             cmx_signal_std=self.context.cmx_signal.std,
             cmx_signal_zscore=self.context.cmx_signal.zscore,
             cmx_pnl=self.context.cmx_risk.pnl,
             cmx_position=self.context.cmx_invent.positions[0],
             cmx_amount=self.context.cmx_invent.amounts[0],
             cmx_prices=self.context.cmx_invent.prices.copy(),
             cmx_low_prices=self.context.cmx_invent.lower_prices.copy(),
             cmx_high_prices=self.context.cmx_invent.upper_prices.copy(),
             cmx_pnls=self.context.cmx_risk.leg_pnls.copy(),
             cmx_positions=self.context.cmx_invent.positions.copy(),
             cmx_amounts=self.context.cmx_invent.amounts.copy(),
             cmx_traded=self.context.cmx_invent.trade_positions.copy(),
             cmx_unhedged_amounts=self.context.cmx_invent.unhedged_amounts.
             copy(),
             cmx_unhedged_positions=self.context.cmx_invent.
             unhedged_positions.copy(),
         )
         self._last_update_ts = ts
Exemple #10
0
def handle_data(context, data):
    # Skip bars until we can calculate momentum
    context.i += 1
    if context.i < context.look_back_window:
        return
    btc_price = data.current(context.btc.asset_usdt, 'price')

    if context.i % context.look_back_window == 0:
        highest_momentum_value = 0
        highest_momentum_asset = None
        for asset in context.assets:
            asset_momentum = asset.get_momentum(data)
            if asset_momentum > highest_momentum_value:
                highest_momentum_asset = asset
                highest_momentum_value = asset_momentum

        if highest_momentum_value > 0:
            print("buying {}, with momentum of {} at {}".format(
                highest_momentum_asset.name, highest_momentum_value,
                data.current_dt))
            for asset in context.assets:
                if asset.name != highest_momentum_asset.name:
                    asset.sell_all()
            highest_momentum_asset.buy_all()

        else:
            print("Bear market sell all at {}".format(data.current_dt))
            for asset in context.assets:
                asset.sell_all()

    record(btc_price=btc_price, cash=context.portfolio.cash)
Exemple #11
0
def handle_data(context, data):
    print('handling bar: {}'.format(data.current_dt))

    price = data.current(context.asset, 'close')
    print('got price {price}'.format(price=price))

    try:
        prices = data.history(
            context.asset,
            fields='price',
            bar_count=14,
            frequency='15T'
        )
        rsi = talib.RSI(prices.values, timeperiod=14)[-1]
        print('got rsi: {}'.format(rsi))
    except Exception as e:
        print(e)

    # If base_price is not set, we use the current value. This is the
    # price at the first bar which we reference to calculate price_change.
    if context.base_price is None:
        context.base_price = price

    price_change = (price - context.base_price) / context.base_price
    cash = context.portfolio.cash

    # Now that we've collected all current data for this frame, we use
    # the record() method to save it. This data will be available as
    # a parameter of the analyze() function for further analysis.
    record(
        price=price,
        price_change=price_change,
        cash=cash
    )
def handle_data(context, data):

    RSI_periods = 14

    context.i += 1
    if context.i < RSI_periods:
        return

    RSI_data = data.history(context.asset,
                            "price",
                            bar_count=RSI_periods,
                            frequency="30T")

    # compute RSI
    oversold = 30
    overbought = 70

    deltas = RSI_data.diff()
    seed = deltas[:RSI_periods + 1]
    up = seed[seed >= 0].sum() / RSI_periods
    down = -seed[seed < 0].sum() / RSI_periods

    RS = up / down
    RSI = 100 - (100 / (1 + RS))

    # get current price
    price = data.current(context.asset, "price")

    if context.base_price == None:
        context.base_price = price

    price_change = (price - context.base_price) / context.base_price

    record(price=price,
           cash=context.portfolio.cash,
           price_change=price_change,
           RSI=RSI)

    orders = context.blotter.open_orders
    if len(orders) > 0:
        return

    if not data.can_trade(context.asset):
        print("Cannot trade right now")
        return

    pos_amount = context.portfolio.positions[context.asset].amount

    # strategy logic
    if pos_amount == 0 and RSI <= oversold:
        order_target_percent(context.asset, 1)

    elif pos_amount < 0 and RSI <= 40:
        order_target_percent(context.asset, 0)

    elif pos_amount == 0 and RSI >= overbought:
        order_target_percent(context.asset, -1)

    elif pos_amount > 0 and RSI >= 60:
        order_target_percent(context.asset, 0)
Exemple #13
0
def handle_data(context, data):
    context.i += 1
    high_history = data.history(context.asset,
                                'high',
                                bar_count=3,
                                frequency="1D")
    low_history = data.history(context.asset,
                               'low',
                               bar_count=3,
                               frequency="1D")

    open = data.current(context.asset, 'open')
    high = data.current(context.asset, 'high')
    low = data.current(context.asset, 'low')
    close = data.current(context.asset, 'close')
    volume = data.current(context.asset, 'volume')
    price = data.current(context.asset, 'price')

    signal = inside_bar_signal(high_history, low_history)
    if signal == 1:
        # Bull break
        print("Bull break")
        order_target_percent(context.asset, 1)
    elif signal == -1:
        # Bear break
        print("Bear break")
        order_target_percent(context.asset, 0)
    record(open=open,
           high=high,
           low=low,
           close=close,
           volume=volume,
           price=price,
           signal=signal)
Exemple #14
0
def handle_data(context, data):
    cash = context.portfolio.cash
    target_hodl_value = TARGET_HODL_RATIO * context.portfolio.starting_cash
    reserve_value = RESERVE_RATIO * context.portfolio.starting_cash

    # Cancel any outstanding orders
    orders = get_open_orders(context.asset) or []
    for order in orders:
        cancel_order(order)

    # Stop buying after passing the reserve threshold
    if cash <= reserve_value:
        context.is_buying = False

    # Retrieve current asset price from pricing data
    price = data[context.asset].price

    # Check if still buying and could (approximately) afford another purchase
    if context.is_buying and cash > price:
        # Place order to make position in asset equal to target_hodl_value
        order_target_value(
            context.asset,
            target_hodl_value,
            limit_price=price * 1.1,
            stop_price=price * 0.9,
        )

    record(
        price=price,
        cash=cash,
        starting_cash=context.portfolio.starting_cash,
        leverage=context.account.leverage,
    )
def handle_data(context, data):
    price = data.current(context.asset, 'price')

    prices = data.history(
            context.asset,
            bar_count=context.lookback_period,
            fields=['price', 'open', 'high', 'low', 'close'],
            frequency='1d'
            )


    macd, macd_signal, macd_hist = ta.MACD(
                                    prices['close'].values,
                                    fastperiod=12,
                                    slowperiod=26,
                                    signalperiod=9
                                    )

    macd_current        = macd[-1]
    macd_signal_current = macd_signal[-1]

    macd_prev           = macd[-2]
    macd_signal_prev    = macd_signal[-2]

    # Record MACD
    record(
        price=price,
        cash=context.portfolio.cash,
        macd=macd[-1],
        macd_signal=macd_signal[-1],
        macd_hist=macd_hist[-1]
    )


    # Check we dont have any open orders
    #orders = context.blotter.open_orders
    #  if len(orders) > 0:
        # Manage existing trades
        #  return

    # Exit if we cannot trade
    if not data.can_trade(context.asset):
        return

    # Buy / sell signals
    if macd_prev < macd_signal_prev and macd_current > macd_signal_current:
        print("Buy opportunity")
        # Buy
        if not context.bought:
            print("BUYING")
            order_target_percent(context.asset, 1)
            context.bought = True
    elif macd_prev > macd_signal_prev and macd_current < macd_signal_current:
        # Sell
        print("Sell opportunity")
        # Buy
        if context.bought:
            print("EXITING POSITION")
            order_target_percent(context.asset, 0)
            context.bought = False
Exemple #16
0
def handle_data(context, data):
    context.day_timer += 1

    if LIVE:
        log.info(f" Current day timer: {context.day_timer} ")

    # 4hour Momstop
    if context.buy_all:
        trigger_buy_holdings(context, data)
        context.buy_all = False
    if context.liquidate_all:
        trigger_liquidate_holdings(context, data)
        context.liquidate_all = False

    if context.day_timer % context.trading_execution_time == 0:
        log_portfolio(context, NAMESPACE)
        for asset in context.assets[1:]:

            # ------History / Indicator logic------ #
            load_history_and_indicators(context, data, asset)
            # ------ History / Indicator logic------ #

            # ------ Order logic ------ #
            log.info(
                f"4 Hour Momstop: Asset: {asset.symbol.asset_name} Price: {asset.price} VSTOP: {asset.vstop}"
            )
            # Specific assets triggers:
            trigger_vstop_trend_change(context, data, asset)
            # ------ Order logic ------ #
            record(cash=context.portfolio.cash)
            if asset == context.assets[1]:
                record(price_1=asset.price, vstop_1=asset.vstop)
            if asset == context.assets[2]:
                record(price_2=asset.price, vstop_2=asset.vstop)

    if context.day_timer >= context.btc_trading_execution_time:

        asset = context.assets[0]

        # ------History / Indicator logic------ #
        load_history_and_indicators(context, data, asset)
        # ------ History / Indicator logic------ #

        # ------ Order logic ------ #
        log.info(
            f"Asset: {asset.symbol.asset_name} Price: {asset.price} VSTOP: {asset.vstop}"
        )

        # Portfolio triggers:

        # Specific assets triggers:
        trigger_btc_rsi_dip(context, data, asset)
        trigger_vstop_trend_change(context, data, asset)
        # ------ Order logic ------ #

        # ------ Record Graph variables ------#
        if not LIVE:
            record(cash=context.portfolio.cash)
            record(price_0=asset.price, vstop_0=asset.vstop, rsi=asset.rsi)
        context.day_timer = 1
Exemple #17
0
def rebalance(context, data):
    context.i += 1

    # skip first LONG_WINDOW bars to fill windows
    if context.i < LONG_WINDOW:
        return

    # get pipeline data for asset of interest
    pipeline_data = context.pipeline_data
    pipeline_data = pipeline_data[pipeline_data.index == context.asset].iloc[0]

    # retrieve long and short moving averages from pipeline
    short_mavg = pipeline_data.short_mavg
    long_mavg = pipeline_data.long_mavg
    price = pipeline_data.price

    # check that order has not already been placed
    open_orders = get_open_orders()
    if context.asset not in open_orders:
        # check that the asset of interest can currently be traded
        if data.can_trade(context.asset):
            # adjust portfolio based on comparison of long and short vwap
            if short_mavg > long_mavg:
                order_target_percent(context.asset, TARGET_INVESTMENT_RATIO)
            elif short_mavg < long_mavg:
                order_target_percent(context.asset, 0.0)

    record(
        price=price,
        cash=context.portfolio.cash,
        leverage=context.account.leverage,
        short_mavg=short_mavg,
        long_mavg=long_mavg,
    )
def handle_data(context, data):
    # define the windows for the moving averages
    short_window = 50
    long_window = 200

    # Skip as many bars as long_window to properly compute the average
    context.i += 1
    if context.i < long_window:
        return

    # Compute moving averages calling data.history() for each
    # moving average with the appropriate parameters. We choose to use
    # minute bars for this simulation -> freq="1m"
    # Returns a pandas dataframe.
    short_mavg = data.history(context.asset,
                              'price',
                              bar_count=short_window,
                              frequency="1m").mean()
    long_mavg = data.history(context.asset,
                             'price',
                             bar_count=long_window,
                             frequency="1m").mean()

    # Let's keep the price of our asset in a more handy variable
    price = data.current(context.asset, 'price')

    # If base_price is not set, we use the current value. This is the
    # price at the first bar which we reference to calculate price_change.
    if context.base_price is None:
        context.base_price = price
    price_change = (price - context.base_price) / context.base_price

    # Save values for later inspection
    record(price=price,
           cash=context.portfolio.cash,
           price_change=price_change,
           short_mavg=short_mavg,
           long_mavg=long_mavg)

    # Since we are using limit orders, some orders may not execute immediately
    # we wait until all orders are executed before considering more trades.
    orders = get_open_orders(context.asset)
    if len(orders) > 0:
        return

    # Exit if we cannot trade
    if not data.can_trade(context.asset):
        return

    # We check what's our position on our portfolio and trade accordingly
    pos_amount = context.portfolio.positions[context.asset].amount

    # Trading logic
    if short_mavg > long_mavg and pos_amount == 0:
        # we buy 100% of our portfolio for this asset
        order_target_percent(context.asset, 1)
    elif short_mavg < long_mavg and pos_amount > 0:
        # we sell all our positions for this asset
        order_target_percent(context.asset, 0)
Exemple #19
0
def handle_data(context, data):
    """
        在每个交易周期上运行的策略
    """
    context.i += 1  # 记录交易周期
    if context.i < RSI_PERIODS + 3:
        # 如果交易周期过短,无法计算RSI,则跳过循环
        return

    # 获得历史价格
    hitory_data = data.history(
        context.asset,
        'close',
        bar_count=RSI_PERIODS + 3,
        frequency='1D',
    )
    # 获取当前持仓数量
    pos_amount = round(context.portfolio.positions[context.asset].amount, 1)

    # 计算RSI
    rsi_vals = talib.RSI(hitory_data, timeperiod=RSI_PERIODS)

    # RSI 交易策略
    if (rsi_vals[-3] <= RSI_OVER_SOLD_THRESH) and (
            rsi_vals[-2] >= RSI_OVER_SOLD_THRESH) and pos_amount == 0:
        # RSI值上穿超卖阈值,买入
        order_target_percent(context.asset, 1)
        context.signal = SIGNAL_BUY

    if (rsi_vals[-3] >= RSI_OVER_BOUGHT_THRESH) and (
            rsi_vals[-2] <= RSI_OVER_BOUGHT_THRESH) and pos_amount > 0:
        # RSI值下穿超卖阈值,卖出
        order_target_percent(context.asset, 0)
        context.signal = SIGNAL_SELL

    # 获取当前的价格
    price = data.current(context.asset, 'price')
    if context.base_price is None:
        # 如果没有设置初始价格,将第一个周期的价格作为初始价格
        context.base_price = price

    # 计算价格变化百分比,作为基准
    price_change = (price - context.base_price) / context.base_price

    # 记录每个交易周期的信息
    # 1. 价格, 2. 现金, 3. 价格变化率, 4. 快线均值, 5. 慢线均值
    record(price=price,
           cash=context.portfolio.cash,
           price_change=price_change,
           rsi=rsi_vals[-1],
           signal=context.signal)
    # 输出信息
    print('日期:{},价格:{:.4f},资产:{:.2f},持仓量:{:.8f}, {}'.format(
        data.current_dt, price, context.portfolio.portfolio_value, pos_amount,
        context.signal))

    # 进行下一次交易前重置交易信号
    context.signal = SIGNAL_INIT
Exemple #20
0
    def record(self):
        """Records indicator's output to catalyst results"""
        payload = {}
        for out in self.outputs.columns:
            val = self.outputs[out].iloc[-1]
            payload[out] = val

        self.log.debug(payload)
        record(**payload)
def handle_data(context, data):
    """
        循环运行策略
    """
    # 每个交易周期买入1个比特币
    order(context.asset, 1)

    # 记录每个交易周期的比特币价格
    record(btc=data.current(context.asset, 'price'))
def rebalance(context, data):
    context.i += 1

    # Skip first LONG_WINDOW bars to fill windows
    if context.i < context.WIN	DOW:
        return

    # Get pipeline data for asset of interest
    pipeline_data = context.pipeline_data
    pipeline_data = pipeline_data[pipeline_data.index == context.asset].iloc[0]

    # Compute the necessary statistics
    sma = pipeline_data.sma
    std = pipeline_data.std()
    price = pipeline_data.price
    
    # Compute buy and sell thresholds
    # Buy threshold is the simple moving average value plus one standard dev.
    # Sell threshold is the simple moving average value minus one standard dev.
    buy_threshold = sma-0.3*std/math.sqrt(context.WINDOW)
    sell_threshold = sma+0.3*std/math.sqrt(context.WINDOW)
    
    # Check that the order has not already been placed
    open_orders = get_open_orders()
    if context.asset not in open_orders:
        # check that the asset of interest can currently be traded
        if data.can_trade(context.asset):
            # Trading logic: if price is less than the buy threshold, mean 
            # reversion should drive price up. Algorithm invests 100% in the 
            # asset. In the opposite case, mean reversion should drive price 
            # down. Algorithm invests 50% in cash and 50% in the asset. If
            # price is between buy and sell thresholds, algorithm invests 25%
            # in cash and 75% in the asset.
            if price < buy_threshold:
                order_target_percent(
                    context.asset,
                    1.0,
                )
            elif price > sell_threshold:
                order_target_percent(
                    context.asset,
                    0.5,
                )
            else:
                order_target_percent(
                    context.asset,
                    0.75,
                )

    record(
        price=price,
        leverage=context.account.leverage,
        sma=sma,
        std=std,
        buy_threshold=buy_threshold,
        sell_threshold=sell_threshold,
    )
def handle_data(context, data):
    price = data.current(context.asset, 'price')
    record(price=price, cash=context.portfolio.cash)

    if not context.bought:
        order_target_percent(context.asset, 1)
        context.bought = True

    if get_datetime().date() == context.end_date:
        order_target_percent(context.asset, 0)
Exemple #24
0
def handle_data(context, data):
    value = context.portfolio.portfolio_value
    base = 0
    context.day += 1
    buyList = []
    for obj in context.univers:
        market = context.objects[obj]
        if context.mailema:
            if not context.basePrice[obj]:
                context.basePrice[obj] = data.current(symbol(obj), 'price')
            else:
                base += data.current(symbol(obj),
                                     'price') / context.basePrice[obj] - 1
        if not market.ATRs:
            market.setATRs(data)
        market.update(data)
        market.updateCurrentPrice(data)
        oprt = market.getOperator()
        if oprt in ['entry', 'add']:
            if not context.mailema:
                context.mailema = 1
            allM = context.portfolio.portfolio_value
            Qvalue = market.getUnit(allM) * data.current(symbol(obj), 'price')
            #print context.day,'cash: ',context.portfolio.cash
            #print context.day,'all:',context.portfolio.portfolio_value
            print context.day, 'oder: ', Qvalue
            #order_value(symbol(obj),Qvalue)
            buyList.append([symbol(obj), Qvalue])
        elif oprt in ['outry', 'clean']:
            #print context.day,'cash: ',context.portfolio.cash
            #print context.day,'all:',context.portfolio.portfolio_value
            order_target_percent(symbol(obj), 0.0001)

    allBuyM = 0
    for each in buyList:
        allBuyM += each[1]
    if allBuyM > context.portfolio.cash and allBuyM > 0:
        tranRate = context.portfolio.cash / allBuyM
        for each in buyList:
            if each[1] * tranRate > 10:
                order_value(each[0], each[1] * tranRate)
    else:
        for each in buyList:
            if each[1] > 10:
                order_value(each[0], each[1])

    Cash = context.portfolio.cash
    print context.day, 'cash: ', context.portfolio.cash
    print context.day, 'all:', context.portfolio.portfolio_value
    #print context.slippage

    if context.mailema:
        record('Vreturn', ((context.portfolio.portfolio_value / 10000) - 1))
        base /= len(context.univers)
        record('base', base)
def handle_data(context, data):
    # The last known prices of current date and the day before
    yesterday_price, current_price = data.history(context.asset, 'price', 2,
                                                  '1T')
    # Calculate return
    simple_return = current_price / yesterday_price
    # Calculate log return
    log_return = np.log(current_price) - np.log(yesterday_price)
    record(price=current_price,
           simple_return=simple_return,
           log_return=log_return)
def handle_data(context, data):
    # order once. at the beginning
    if context.i == 0:
        order_target_percent(context.asset, 1.0)

    record(
        price=data.current(context.asset, 'price'),
        volume=data.current(context.asset, 'volume'),
    )

    context.i += 1
Exemple #27
0
    def _handle_data(self, context, data):
        """

        Arguments:
            context ()
            data ()
        """
        for market, agent in self.agents.items():
            agent.trade(context, data)

        record(cash=context.portfolio.cash)
def handle_data(context, data):
    price = data.current(context.asset, 'price')
    record(price=price, cash=context.portfolio.cash)

    if not context.bought:
        order(context.asset, 1)
        context.bought = True

    if context.bought and not context.sold and price > 6300:
        order(context.asset, -1)
        context.sold = True
Exemple #29
0
def handle_data(context, data):
    current_time = get_datetime().time()

    # Get data
    A = data.history(
        context.A,
        'price',
        bar_count=context.n_modelling,
        frequency=context.tf,
    )

    B = data.history(
        context.B,
        'price',
        bar_count=context.n_modelling,
        frequency=context.tf,
    )

    # Calc returns and spread
    A_return = A.pct_change()
    B_return = B.pct_change()
    spread = A_return - B_return

    zscore = (spread.iloc[-1] - spread.mean()) / spread.std()

    # Close positions
    if context.portfolio.positions[
            context.B].amount < 0 and zscore >= -context.z_signal_out:
        order_target_percent(context.A, 0.0)
        order_target_percent(context.B, 0.0)
    if context.portfolio.positions[
            context.B].amount > 0 and zscore <= context.z_signal_out:
        order_target_percent(context.A, 0.0)
        order_target_percent(context.B, 0.0)

    # Check minimal allowed spread value
    if (abs(spread[-1]) >= context.min_spread
        ):  # and np.sign(A_return[-1] * B_return[-1]) < 0:
        # Long and Short positions for assets
        if context.portfolio.positions[
                context.B].amount == 0 and zscore > context.z_signal_in:
            order_target_percent(context.A, -0.5 * context.leverage)
            order_target_percent(context.B, 0.5 * context.leverage)

        if context.portfolio.positions[
                context.B].amount == 0 and zscore < -context.z_signal_in:
            order_target_percent(context.A, 0.5 * context.leverage)
            order_target_percent(context.B, -0.5 * context.leverage)

    record(A_return=A_return[-1],
           B_return=B_return[-1],
           spread=spread[-1],
           zscore=zscore)
Exemple #30
0
def handle_data(context, data):
    context.i += 1
    # context.i % 1 == 0
    cash = context.portfolio.cash
    # Retrieve current asset price from pricing data
    price = data.current(context.asset, 'price')

    record(
        price=price,
        volume=data.current(context.asset, 'volume'),
        cash=cash,
        starting_cash=context.portfolio.starting_cash,
    )
    #if(context.i % 60 == 0):
    '''
    Highs = data.history(context.asset,
                         'high',
                         bar_count=30,
                         frequency="1M",
                         )

    Lows = data.history(context.asset,
                        'low',
                        bar_count=30,
                        frequency="1M",
                        )

    Closes = data.history(context.asset,
                          'close',
                          bar_count=30,
                          frequency="1M",
                          )

    Prices = data.history(context.asset,
                          'price',
                          bar_count=30,
                          frequency="1M",
                          )

    ATR = Highs[0] - Lows[0]
    for i in range(1, 29):
        ATR = ATR + max((Highs[i] - Lows[i]), abs(Highs[i] - Closes[i - 1]), abs(Lows[i] - Closes[i - 1]))
    ATR = ATR / 29
    '''

    if (price > 1.01 and context.state == "bought"):
        order_target_percent(context.asset, 0)
        context.state = "sold"
    elif (price <= 1.01 and context.state == "sold"):
        order(context.asset, 1)
        context.state = "bought"
        context.boughtPrice = price
Exemple #31
0
def handle_data_api(context, data):
    if context.incr == 0:
        assert 0 not in context.portfolio.positions
    else:
        assert context.portfolio.positions[0].amount == \
            context.incr, "Orders not filled immediately."
        assert context.portfolio.positions[0].last_sale_price == \
            data.current(sid(0), "price"), \
            "Orders not filled at current price."
    context.incr += 1
    order(sid(0), 1)

    record(incr=context.incr)
 def save_record(self):
     record(price=self.context.cmx_signal.price,
            fair_price=self.context.cmx_signal.fair_price,
            zscore=self.context.cmx_signal.zscore,
            price_change=self.context.cmx_signal.price_change,
            invent_long_entry=self.context.cmx_signal.fair_price -
            self.context.invent_pm * self.context.cmx_signal.std,
            invent_short_entry=self.context.cmx_signal.fair_price +
            self.context.invent_pm * self.context.cmx_signal.std,
            base_pos=self.context.cmx_risk.base_pos,
            quote_pos=self.context.cmx_risk.quote_pos,
            cmx_pnl=self.context.cmx_risk.pnl,
            cmx_max_pos=self.context.risk_max_long_pos)
def _handle_data_rsi_only(context, data):
    price = data.current(context.asset, 'close')
    log.info('got price {price}'.format(price=price))

    if price is np.nan:
        log.warn('no pricing data')
        return

    if context.base_price is None:
        context.base_price = price

    try:
        prices = data.history(
            context.asset,
            fields='price',
            bar_count=20,
            frequency='30T'
        )
    except Exception as e:
        log.warn('historical data not available: '.format(e))
        return

    rsi = talib.RSI(prices.values, timeperiod=16)[-1]
    log.info('got rsi {}'.format(rsi))

    signal = None
    if rsi < context.RSI_OVERSOLD:
        signal = 'long'

    # Making sure that the price is still current
    price = data.current(context.asset, 'close')
    cash = context.portfolio.cash
    log.info(
        'base currency available: {cash}, cap: {cap}'.format(
            cash=cash,
            cap=context.MAX_HOLDINGS
        )
    )
    volume = data.current(context.asset, 'volume')
    price_change = (price - context.base_price) / context.base_price
    record(
        price=price,
        price_change=price_change,
        rsi=rsi,
        volume=volume,
        cash=cash,
        starting_cash=context.portfolio.starting_cash,
        leverage=context.account.leverage,
    )

    _handle_buy_sell_decision(context, data, signal, price)
Exemple #34
0
def handle_data(context, data):
    price = data.current(context.asset, 'price')
    record(btc=price)

    # Only ordering if it does not have any position to avoid trying some
    # tiny orders with the leftover btc
    pos_amount = context.portfolio.positions[context.asset].amount
    if pos_amount > 0:
        return

    # Adding a limit price to workaround an issue with performance
    # calculations of market orders
    order_target_percent(
        context.asset, 1, limit_price=price * 1.01
    )
Exemple #35
0
def handle_data(context, data):
    context.i += 1

    starting_cash = context.portfolio.starting_cash
    target_hodl_value = context.TARGET_HODL_RATIO * starting_cash
    reserve_value = context.RESERVE_RATIO * starting_cash

    # Cancel any outstanding orders
    orders = get_open_orders(context.asset) or []
    for order in orders:
        cancel_order(order)

    # Stop buying after passing the reserve threshold
    cash = context.portfolio.cash
    if cash <= reserve_value:
        context.is_buying = False

    # Retrieve current asset price from pricing data
    price = data.current(context.asset, 'price')

    # Check if still buying and could (approximately) afford another purchase
    if context.is_buying and cash > price:
        print('buying')
        # Place order to make position in asset equal to target_hodl_value
        order_target_value(
            context.asset,
            target_hodl_value,
            limit_price=price * 1.1,
        )

    record(
        price=price,
        volume=data.current(context.asset, 'volume'),
        cash=cash,
        starting_cash=context.portfolio.starting_cash,
        leverage=context.account.leverage,
    )
Exemple #36
0
def default_handle_data(context, data):
    context.curr_minute = data.current_dt
    context.counter += 1

    if context.candles_sample_rate == 1:
        context.i += 1
    elif context.counter % context.candles_sample_rate != 0:
        context.i += 1
        return

    if context.i < context.parameters.SKIP_FIRST_CANDLES:
        return

    context.candles_open = data.history(
        context.coin_pair,
        'open',
        bar_count=context.candles_buffer_size,
        frequency=context.candles_frequency)
    context.candles_high = data.history(
        context.coin_pair,
        'high',
        bar_count=context.candles_buffer_size,
        frequency=context.candles_frequency)
    context.candles_low = data.history(
        context.coin_pair,
        'low',
        bar_count=context.candles_buffer_size,
        frequency=context.candles_frequency)
    context.candles_close = data.history(
        context.coin_pair,
        'price',
        bar_count=context.candles_buffer_size,
        frequency=context.candles_frequency)
    context.candles_volume = data.history(
        context.coin_pair,
        'volume',
        bar_count=context.candles_buffer_size,
        frequency=context.candles_frequency)

    # FIXME: Here is the error!
    # The candles_close frame shows more or less always a value of 94, while
    # bitcoin price is very different from that
    print(context.candles_close)

    context.base_prices = context.candles_close
    cash = context.portfolio.cash
    amount = context.portfolio.positions[context.coin_pair].amount
    price = data.current(context.coin_pair, 'price')
    order_id = None
    context.last_base_price = context.base_prices[-2]
    context.curr_base_price = context.base_prices[-1]

    # TA calculations
    # ...

    # Sanity checks
    # assert cash >= 0
    if cash < 0:
        import ipdb;
        ipdb.set_trace()  # BREAKPOINT

    print_facts(context)
    print_facts_telegram(context)

    # Order management
    net_shares = 0
    if context.counter == 2:
        brute_shares = (cash / price) * context.parameters.BUY_PERCENTAGE
        share_commission_fee = brute_shares * context.parameters.COMMISSION_FEE
        net_shares = brute_shares - share_commission_fee
        buy_order_id = order(context.coin_pair, net_shares)

    if context.counter == 3:
        brute_shares = amount * context.parameters.SELL_PERCENTAGE
        share_commission_fee = brute_shares * context.parameters.COMMISSION_FEE
        net_shares = -(brute_shares - share_commission_fee)
        sell_order_id = order(context.coin_pair, net_shares)

    # Record
    record(
        price=price,
        foo='bar',
        # volume=current['volume'],
        # price_change=price_change,
        # Metrics
        cash=cash,
        # buy=context.buy,
        # sell=context.sell
    )
def handle_data(context, data):
    # This handle_data function is where the real work is done.  Our data is
    # minute-level tick data, and each minute is called a frame.  This function
    # runs on each frame of the data.

    # We flag the first period of each day.
    # Since cryptocurrencies trade 24/7 the `before_trading_starts` handle
    # would only execute once. This method works with minute and daily
    # frequencies.
    today = data.current_dt.floor('1D')
    if today != context.current_day:
        context.traded_today = False
        context.current_day = today

    # We're computing the volume-weighted-average-price of the security
    # defined above, in the context.market variable.  For this example, we're
    # using three bars on the 15 min bars.

    # The frequency attribute determine the bar size. We use this convention
    # for the frequency alias:
    # http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
    prices = data.history(
        context.market,
        fields='close',
        bar_count=50,
        frequency=context.CANDLE_SIZE
    )

    # Ta-lib calculates various technical indicator based on price and
    # volume arrays.

    # In this example, we are comp
    rsi = talib.RSI(prices.values, timeperiod=14)

    # We need a variable for the current price of the security to compare to
    # the average. Since we are requesting two fields, data.current()
    # returns a DataFrame with
    current = data.current(context.market, fields=['close', 'volume'])
    price = current['close']

    # If base_price is not set, we use the current value. This is the
    # price at the first bar which we reference to calculate price_change.
    if context.base_price is None:
        context.base_price = price

    price_change = (price - context.base_price) / context.base_price
    cash = context.portfolio.cash

    # Now that we've collected all current data for this frame, we use
    # the record() method to save it. This data will be available as
    # a parameter of the analyze() function for further analysis.

    record(
        volume=current['volume'],
        price=price,
        price_change=price_change,
        rsi=rsi[-1],
        cash=cash
    )
    # We are trying to avoid over-trading by limiting our trades to
    # one per day.
    if context.traded_today:
        return

    # TODO: retest with open orders
    # Since we are using limit orders, some orders may not execute immediately
    # we wait until all orders are executed before considering more trades.
    orders = context.blotter.open_orders
    if len(orders) > 0:
        log.info('exiting because orders are open: {}'.format(orders))
        return

    # Exit if we cannot trade
    if not data.can_trade(context.market):
        return

    # Another powerful built-in feature of the Catalyst backtester is the
    # portfolio object.  The portfolio object tracks your positions, cash,
    # cost basis of specific holdings, and more.  In this line, we calculate
    # how long or short our position is at this minute.
    pos_amount = context.portfolio.positions[context.market].amount

    if rsi[-1] <= context.RSI_OVERSOLD and pos_amount == 0:
        log.info(
            '{}: buying - price: {}, rsi: {}'.format(
                data.current_dt, price, rsi[-1]
            )
        )
        # Set a style for limit orders,
        limit_price = price * 1.005
        order_target_percent(
            context.market, 1, limit_price=limit_price
        )
        context.traded_today = True

    elif rsi[-1] >= context.RSI_OVERBOUGHT and pos_amount > 0:
        log.info(
            '{}: selling - price: {}, rsi: {}'.format(
                data.current_dt, price, rsi[-1]
            )
        )
        limit_price = price * 0.995
        order_target_percent(
            context.market, 0, limit_price=limit_price
        )
        context.traded_today = True
Exemple #38
0
def handle_data(context, data):
    order(context.asset, 1)
    record(btc=data.current(context.asset, 'price'))
def handle_data(context, data):
    # define the windows for the moving averages
    short_window = 50
    long_window = 200

    # Skip as many bars as long_window to properly compute the average
    context.i += 1
    if context.i < long_window:
        return

    # Compute moving averages calling data.history() for each
    # moving average with the appropriate parameters. We choose to use
    # minute bars for this simulation -> freq="1m"
    # Returns a pandas dataframe.
    short_data = data.history(context.asset,
                              'price',
                              bar_count=short_window,
                              frequency="1T",
                              )
    short_mavg = short_data.mean()
    long_data = data.history(context.asset,
                             'price',
                             bar_count=long_window,
                             frequency="1T",
                             )
    long_mavg = long_data.mean()

    # Let's keep the price of our asset in a more handy variable
    price = data.current(context.asset, 'price')

    # If base_price is not set, we use the current value. This is the
    # price at the first bar which we reference to calculate price_change.
    if context.base_price is None:
        context.base_price = price
    price_change = (price - context.base_price) / context.base_price

    # Save values for later inspection
    record(price=price,
           cash=context.portfolio.cash,
           price_change=price_change,
           short_mavg=short_mavg,
           long_mavg=long_mavg)

    # Since we are using limit orders, some orders may not execute immediately
    # we wait until all orders are executed before considering more trades.
    orders = get_open_orders(context.asset)
    if len(orders) > 0:
        return

    # Exit if we cannot trade
    if not data.can_trade(context.asset):
        return

    # We check what's our position on our portfolio and trade accordingly
    pos_amount = context.portfolio.positions[context.asset].amount

    # Trading logic
    if short_mavg > long_mavg and pos_amount == 0:
        # we buy 100% of our portfolio for this asset
        order_target_percent(context.asset, 1)
    elif short_mavg < long_mavg and pos_amount > 0:
        # we sell all our positions for this asset
        order_target_percent(context.asset, 0)
def _handle_data(context, data):
    price = data.current(context.asset, 'price')
    log.info('got price {price}'.format(price=price))

    prices = data.history(
        context.asset,
        fields='price',
        bar_count=20,
        frequency='1D'
    )
    rsi = talib.RSI(prices.values, timeperiod=14)[-1]
    log.info('got rsi: {}'.format(rsi))

    # Buying more when RSI is low, this should lower our cost basis
    if rsi <= 30:
        buy_increment = 1
    elif rsi <= 40:
        buy_increment = 0.5
    elif rsi <= 70:
        buy_increment = 0.2
    else:
        buy_increment = 0.1

    cash = context.portfolio.cash
    log.info('base currency available: {cash}'.format(cash=cash))

    record(
        price=price,
        rsi=rsi,
    )

    orders = context.blotter.open_orders
    if orders:
        log.info('skipping bar until all open orders execute')
        return

    is_buy = False
    cost_basis = None
    if context.asset in context.portfolio.positions:
        position = context.portfolio.positions[context.asset]

        cost_basis = position.cost_basis
        log.info(
            'found {amount} positions with cost basis {cost_basis}'.format(
                amount=position.amount,
                cost_basis=cost_basis
            )
        )

        if position.amount >= context.TARGET_POSITIONS:
            log.info('reached positions target: {}'.format(position.amount))
            return

        if price < cost_basis:
            is_buy = True
        elif (position.amount > 0
              and price > cost_basis * (1 + context.PROFIT_TARGET)):
            profit = (price * position.amount) - (cost_basis * position.amount)
            log.info('closing position, taking profit: {}'.format(profit))
            order_target_percent(
                asset=context.asset,
                target=0,
                limit_price=price * (1 - context.SLIPPAGE_ALLOWED),
            )
        else:
            log.info('no buy or sell opportunity found')
    else:
        is_buy = True

    if is_buy:
        if buy_increment is None:
            log.info('the rsi is too high to consider buying {}'.format(rsi))
            return

        if price * buy_increment > cash:
            log.info('not enough base currency to consider buying')
            return

        log.info(
            'buying position cheaper than cost basis {} < {}'.format(
                price,
                cost_basis
            )
        )
        order(
            asset=context.asset,
            amount=buy_increment,
            limit_price=price * (1 + context.SLIPPAGE_ALLOWED)
        )
Exemple #41
0
def handle_data(context, data):
    order(context.assets[0], 1)

    prices = data.current(context.assets, 'price')
    record(price=prices)
    pass
def handle_data(context, data):
    log.info('handling bar {}'.format(data.current_dt))

    buying_price = data.current(
        context.trading_pairs[context.buying_exchange], 'price')

    log.info('price on buying exchange {exchange}: {price}'.format(
        exchange=context.buying_exchange.name.upper(),
        price=buying_price,
    ))

    selling_price = data.current(
        context.trading_pairs[context.selling_exchange], 'price')

    log.info('price on selling exchange {exchange}: {price}'.format(
        exchange=context.selling_exchange.name.upper(),
        price=selling_price,
    ))

    # If for example,
    #   selling price = 50
    #   buying price = 25
    #   expected gap = 1

    # If follows that,
    #   selling price - buying price / buying price
    #   50 - 25 / 25 = 1
    gap = (selling_price - buying_price) / buying_price
    log.info(
        'the price gap: {gap} ({gap_percent}%)'.format(
            gap=gap,
            gap_percent=gap * 100
        )
    )
    record(buying_price=buying_price, selling_price=selling_price, gap=gap)

    # Waiting for orders to close before initiating new ones
    for exchange in context.trading_pairs:
        asset = context.trading_pairs[exchange]

        orders = get_open_orders(asset)
        if orders:
            log.info(
                'found {order_count} open orders on {exchange_name} '
                'skipping bar until all open orders execute'.format(
                    order_count=len(orders),
                    exchange_name=exchange.name
                )
            )
            return

    # Consider the least ambitious entry point first
    # Override of wider gap is found
    entry_points = sorted(
        context.entry_points,
        key=lambda point: point['gap'],
    )

    buy_amount = None
    for entry_point in entry_points:
        if gap > entry_point['gap']:
            buy_amount = entry_point['amount']

    if buy_amount:
        log.info('found buy trigger for amount: {}'.format(buy_amount))
        place_orders(
            context=context,
            amount=buy_amount,
            buying_price=buying_price,
            selling_price=selling_price,
            action='enter'
        )

    else:
        # Consider the narrowest exit gap first
        # Override of wider gap is found
        exit_points = sorted(
            context.exit_points,
            key=lambda point: point['gap'],
            reverse=True
        )

        sell_amount = None
        for exit_point in exit_points:
            if gap < exit_point['gap']:
                sell_amount = exit_point['amount']

        if sell_amount:
            log.info('found sell trigger for amount: {}'.format(sell_amount))
            place_orders(
                context=context,
                amount=sell_amount,
                buying_price=buying_price,
                selling_price=selling_price,
                action='exit'
            )
Exemple #43
0
 def handle_data(self, data):
     self.incr += 1
     self.record(incr=self.incr)
     name = 'name'
     self.record(name, self.incr)
     record(name, self.incr, 'name2', 2, name3=self.incr)
def handle_data(context, data):
    # Only rebalance at the beggining of the algorithm execution and
    # every multiple of the rebalance period
    if context.i == 0 or context.i % context.rebalance_period == 0:
        n = context.window
        prices = data.history(context.assets, fields='price',
                              bar_count=n + 1, frequency='1d')
        pr = np.asmatrix(prices)
        t_prices = prices.iloc[1:n + 1]
        t_val = t_prices.values
        tminus_prices = prices.iloc[0:n]
        tminus_val = tminus_prices.values
        # Compute daily returns (r)
        r = np.asmatrix(t_val / tminus_val - 1)
        # Compute the expected returns of each asset with the average
        # daily return for the selected time window
        m = np.asmatrix(np.mean(r, axis=0))
        # ###
        stds = np.std(r, axis=0)
        # Compute excess returns matrix (xr)
        xr = r - m
        # Matrix algebra to get variance-covariance matrix
        cov_m = np.dot(np.transpose(xr), xr) / n
        # Compute asset correlation matrix (informative only)
        corr_m = cov_m / np.dot(np.transpose(stds), stds)

        # Define portfolio optimization parameters
        n_portfolios = 50000
        results_array = np.zeros((3 + context.nassets, n_portfolios))
        for p in xrange(n_portfolios):
            weights = np.random.random(context.nassets)
            weights /= np.sum(weights)
            w = np.asmatrix(weights)
            p_r = np.sum(np.dot(w, np.transpose(m))) * 365
            p_std = np.sqrt(np.dot(np.dot(w, cov_m),
                                   np.transpose(w))) * np.sqrt(365)

            # store results in results array
            results_array[0, p] = p_r
            results_array[1, p] = p_std
            # store Sharpe Ratio (return / volatility) - risk free rate element
            # excluded for simplicity
            results_array[2, p] = results_array[0, p] / results_array[1, p]
            i = 0
            for iw in weights:
                results_array[3 + i, p] = weights[i]
                i += 1

        # convert results array to Pandas DataFrame
        results_frame = pd.DataFrame(np.transpose(results_array),
                                     columns=['r', 'stdev', 'sharpe']
                                             + context.assets)
        # locate position of portfolio with highest Sharpe Ratio
        max_sharpe_port = results_frame.iloc[results_frame['sharpe'].idxmax()]
        # locate positon of portfolio with minimum standard deviation
        # min_vol_port = results_frame.iloc[results_frame['stdev'].idxmin()]

        # order optimal weights for each asset
        for asset in context.assets:
            if data.can_trade(asset):
                order_target_percent(asset, max_sharpe_port[asset])

        # create scatter plot coloured by Sharpe Ratio
        plt.scatter(results_frame.stdev,
                    results_frame.r,
                    c=results_frame.sharpe,
                    cmap='RdYlGn')
        plt.xlabel('Volatility')
        plt.ylabel('Returns')
        plt.colorbar()
        # plot red star to highlight position of portfolio
        # with highest Sharpe Ratio
        plt.scatter(max_sharpe_port[1],
                    max_sharpe_port[0],
                    marker='o',
                    color='b',
                    s=200)
        # plot green star to highlight position of minimum variance portfolio
        plt.show()
        print(max_sharpe_port)
        record(pr=pr,
               r=r,
               m=m,
               stds=stds,
               max_sharpe_port=max_sharpe_port,
               corr_m=corr_m)
    context.i += 1