Exemple #1
0
    def on_batch_end(self, state: State):
        names = state.batch_in[self.outpath_key]
        images = state.batch_in[self.input_key]

        images = utils.tensor_to_ndimage(images.detach().cpu(), dtype=np.uint8)
        for image, name in zip(images, names):
            fname = self.get_image_path(state, name, self.filename_suffix)
            imageio.imwrite(fname, image)
Exemple #2
0
    def on_batch_end(self, state: State):
        names = state.batch_in[self.outpath_key]
        images = state.batch_in[self.input_key]
        masks = state.batch_out[self.output_key]

        images = utils.tensor_to_ndimage(images.detach().cpu())
        for name, image, mask in zip(names, images, masks):
            image = mask_to_overlay_image(image, mask, self.mask_strength)
            fname = self.get_image_path(state, name, self.filename_suffix)
            imageio.imwrite(fname, image)
Exemple #3
0
    def on_batch_end(self, runner: IRunner):
        """Save batch of images.

        Args:
            runner (IRunner): current runner
        """
        names = runner.input[self.outpath_key]
        images = runner.input[self.input_key]

        images = utils.tensor_to_ndimage(images.detach().cpu(), dtype=np.uint8)
        for image, name in zip(images, names):
            fname = self._get_image_path(runner.logdir, name)
            imageio.imwrite(fname, image)
Exemple #4
0
    def on_batch_end(self, runner: IRunner):
        """Save batch of images with overlay.

        Args:
            runner (IRunner): current runner
        """
        names = runner.input[self.outpath_key]
        images = runner.input[self.input_key]
        masks = runner.output[self.output_key]

        images = utils.tensor_to_ndimage(images.detach().cpu())
        for name, image, mask in zip(names, images, masks):
            image = mask_to_overlay_image(image, mask, self.mask_strength)
            fname = self._get_image_path(runner.logdir, name)
            imageio.imwrite(fname, image)
    def on_batch_end(self, runner: IRunner):
        """Batch end hook.

        Args:
            runner (IRunner): current runner
        """
        lm = runner.loader_name
        names = runner.input.get(self.name_key, [])

        features = runner.input[self.input_key].detach().cpu()
        images = utils.tensor_to_ndimage(features)

        logits = runner.output[self.output_key]
        logits = (
            torch.unsqueeze_(logits, dim=1)
            if len(logits.shape) < 4
            else logits
        )

        if self.mask_type == "soft":
            probabilities = torch.sigmoid(logits)
        else:
            probabilities = F.softmax(logits, dim=1)
        probabilities = probabilities.detach().cpu().numpy()

        masks = []
        for probability in probabilities:
            mask = np.zeros_like(probability[0], dtype=np.int32)
            for i, ch in enumerate(probability):
                mask[ch >= self.threshold] = i + 1
            masks.append(mask)

        for index, (image, mask) in enumerate(zip(images, masks)):
            try:
                suffix = names[index]
            except IndexError:
                suffix = f"{self.counter:06d}"
            self.counter += 1

            mask = label2rgb(mask, bg_label=0)

            image = (
                image * (1 - self.mask_strength) + mask * self.mask_strength
            )
            image = (image * 255).clip(0, 255).round().astype(np.uint8)

            filename = f"{self.out_prefix}/{lm}/{suffix}.jpg"
            imageio.imwrite(filename, image)
Exemple #6
0
    def on_batch_end(self, state: State):
        names = state.batch_in[self.outpath_key]
        images = state.batch_in[self.input_key]
        gtmasks = state.batch_in[self.input_target_key]

        images = utils.tensor_to_ndimage(images.detach().cpu())
        gtmasks = gtmasks.detach().cpu().squeeze(1).numpy()

        predmasks = state.batch_out[self.output_key]

        # print('img %s, gt %s, pred %s' %(images.shape, gtmasks.shape, predmasks.shape))
        for name, image, gtmask, predmask in zip(names, images, gtmasks,
                                                 predmasks):
            # image = mask_to_overlay_image(image, mask, self.mask_strength)
            dice = dice_score(gtmask, predmask)
            self.dice_list.append(dice)
            plot_obj = PlotSeg2Image(image[..., 1])
            plot_obj.put_on_mask(gtmask, color='r', is_bbox_on=False)
            plot_obj.put_on_mask(predmask, color='g', is_bbox_on=False)
            fname = self.get_image_path(state, name, '%0.4f' % dice)
            # print('check2:', str(fname))
            plot_obj.save_fig(fname)
    model=model,
    loader=infer_loader,
    resume=f"{logdir}/checkpoints/best.pth",
    verbose=False,
)

print(type(predictions))
print(predictions.shape)

# In[22]:

threshold = 0.5
max_count = 5

for i, (features, logits) in enumerate(zip(test_dataset, predictions)):
    image = utils.tensor_to_ndimage(features["image"])

    mask_ = torch.from_numpy(logits[0]).sigmoid()
    mask = utils.detach(mask_ > threshold).astype("float")

    show_examples(name="", image=image, mask=mask)

    if i >= max_count:
        break

# ## Model tracing
#
# Catalyst allows you to use Runner to make [tracing](https://pytorch.org/docs/stable/jit.html) models.
#
# > How to do this in the Config API, we wrote in [our blog (issue \#2)](https://github.com/catalyst-team/catalyst-info#catalyst-info-2-tracing-with-torchjit)
#