def main(): generator = nn.Sequential( # We want to generate 128 coefficients to reshape into a 7x7x128 map nn.Linear(128, 128 * 7 * 7), nn.LeakyReLU(0.2, inplace=True), Lambda(lambda x: x.view(x.size(0), 128, 7, 7)), nn.ConvTranspose2d(128, 128, (4, 4), stride=(2, 2), padding=1), nn.LeakyReLU(0.2, inplace=True), nn.ConvTranspose2d(128, 128, (4, 4), stride=(2, 2), padding=1), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(128, 1, (7, 7), padding=3), nn.Sigmoid(), ) discriminator = nn.Sequential( nn.Conv2d(1, 64, (3, 3), stride=(2, 2), padding=1), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 128, (3, 3), stride=(2, 2), padding=1), nn.LeakyReLU(0.2, inplace=True), GlobalMaxPool2d(), Flatten(), nn.Linear(128, 1), ) model = {"generator": generator, "discriminator": discriminator} optimizer = { "generator": torch.optim.Adam( generator.parameters(), lr=0.0003, betas=(0.5, 0.999) ), "discriminator": torch.optim.Adam( discriminator.parameters(), lr=0.0003, betas=(0.5, 0.999) ), } loaders = { "train": DataLoader( MNIST( os.getcwd(), train=True, download=True, transform=ToTensor(), ), batch_size=32, ), } runner = CustomRunner() runner.train( model=model, optimizer=optimizer, loaders=loaders, callbacks=[ dl.OptimizerCallback( optimizer_key="generator", metric_key="loss_generator" ), dl.OptimizerCallback( optimizer_key="discriminator", metric_key="loss_discriminator" ), ], main_metric="loss_generator", num_epochs=20, verbose=True, logdir="./logs_gan", check=True, )
def get_callbacks(self, stage: str): callbacks = { "criterion": dl.CriterionCallback(metric_key="loss", input_key="logits", target_key="targets"), "optimizer": dl.OptimizerCallback( metric_key="loss", grad_clip_fn=nn.utils.clip_grad_norm_, grad_clip_params={"max_norm": 1.0}, ), # "scheduler": dl.SchedulerCallback(loader_key="valid", metric_key="loss"), "accuracy": dl.AccuracyCallback(input_key="logits", target_key="targets", topk_args=(1, 3, 5)), "classification": dl.PrecisionRecallF1SupportCallback(input_key="logits", target_key="targets", num_classes=10), "checkpoint": dl.CheckpointCallback(self._logdir, loader_key="valid", metric_key="loss", minimize=True, save_n_best=3), } if SETTINGS.ml_required: callbacks["confusion_matrix"] = dl.ConfusionMatrixCallback( input_key="logits", target_key="targets", num_classes=10) return callbacks
def get_callbacks(self, stage: str): return { "optimizer": dl.OptimizerCallback(metric_key="loss"), "checkpoint": dl.CheckpointCallback( self._logdir, loader_key="valid", metric_key="loss", minimize=True, save_n_best=3 ), }
def get_callbacks(self, stage: str): return { "criterion": dl.CriterionCallback(input_key="logits", target_key="labels", metric_key="loss"), "optimizer": dl.OptimizerCallback(metric_key="loss"), "scheduler": dl.SchedulerCallback(loader_key="valid", metric_key="loss", mode="batch"), "accuracy": dl.AccuracyCallback(input_key="logits", target_key="labels", topk_args=(1, )), "checkpoint": dl.CheckpointCallback( self._logdir, loader_key="valid", metric_key="accuracy", minimize=False, save_n_best=1, ), # "tqdm": dl.TqdmCallback(), }
def get_callbacks(self, stage: str): return { "criterion": dl.CriterionCallback(metric_key="loss", input_key="logits", target_key="targets"), "optimizer": dl.OptimizerCallback(metric_key="loss"), # "scheduler": dl.SchedulerCallback(loader_key="valid", metric_key="loss"), "accuracy": dl.AccuracyCallback(input_key="logits", target_key="targets", topk_args=(1, 3, 5)), "classification": dl.PrecisionRecallF1SupportCallback(input_key="logits", target_key="targets", num_classes=10), "confusion_matrix": dl.ConfusionMatrixCallback(input_key="logits", target_key="targets", num_classes=10), "checkpoint": dl.CheckpointCallback(self._logdir, loader_key="valid", metric_key="loss", minimize=True, save_n_best=3), }
def get_callbacks(self): return { "criterion": dl.CriterionCallback(metric_key="loss", input_key="logits", target_key="targets"), "backward": dl.BackwardCallback(metric_key="loss"), "optimizer": dl.OptimizerCallback(metric_key="loss"), "scheduler": dl.SchedulerCallback(loader_key="valid", metric_key="loss"), "accuracy": dl.AccuracyCallback(input_key="logits", target_key="targets", topk=(1, 3, 5)), "checkpoint": dl.CheckpointCallback( self._logdir, loader_key="valid", metric_key="accuracy01", minimize=False, topk=1, ), "tqdm": dl.TqdmCallback(), }
def train_experiment(device, engine=None): with TemporaryDirectory() as logdir: teacher = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10)) student = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10)) model = {"teacher": teacher, "student": student} criterion = {"cls": nn.CrossEntropyLoss(), "kl": nn.KLDivLoss(reduction="batchmean")} optimizer = optim.Adam(student.parameters(), lr=0.02) loaders = { "train": DataLoader( MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32 ), "valid": DataLoader( MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32 ), } runner = DistilRunner() # model training runner.train( engine=engine or dl.DeviceEngine(device), model=model, criterion=criterion, optimizer=optimizer, loaders=loaders, num_epochs=1, logdir=logdir, verbose=False, callbacks=[ dl.AccuracyCallback( input_key="t_logits", target_key="targets", num_classes=2, prefix="teacher_" ), dl.AccuracyCallback( input_key="s_logits", target_key="targets", num_classes=2, prefix="student_" ), dl.CriterionCallback( input_key="s_logits", target_key="targets", metric_key="cls_loss", criterion_key="cls", ), dl.CriterionCallback( input_key="s_logprobs", target_key="t_probs", metric_key="kl_div_loss", criterion_key="kl", ), dl.MetricAggregationCallback( metric_key="loss", metrics=["kl_div_loss", "cls_loss"], mode="mean" ), dl.OptimizerCallback(metric_key="loss", model_key="student"), dl.CheckpointCallback( logdir=logdir, loader_key="valid", metric_key="loss", minimize=True, save_n_best=3, ), ], )
def get_callbacks(self, stage: str): callbacks = { "scores": dl.BatchTransformCallback( input_key="logits", output_key="scores", transform=partial(torch.softmax, dim=1), scope="on_batch_end", ), "labels": dl.BatchTransformCallback( input_key="scores", output_key="labels", transform=partial(torch.argmax, dim=1), scope="on_batch_end", ), "criterion": dl.CriterionCallback(metric_key="loss", input_key="logits", target_key="targets"), "optimizer": dl.OptimizerCallback( metric_key="loss", grad_clip_fn=nn.utils.clip_grad_norm_, grad_clip_params={"max_norm": 1.0}, ), # "scheduler": dl.SchedulerCallback(loader_key="valid", metric_key="loss"), "accuracy": dl.AccuracyCallback(input_key="logits", target_key="targets", topk_args=(1, 3, 5)), "classification": dl.PrecisionRecallF1SupportCallback(input_key="logits", target_key="targets", num_classes=10), "checkpoint": dl.CheckpointCallback(self._logdir, loader_key="valid", metric_key="loss", minimize=True, save_n_best=3), } if SETTINGS.ml_required: callbacks["confusion_matrix"] = dl.ConfusionMatrixCallback( input_key="logits", target_key="targets", num_classes=10) callbacks["f1_score"] = dl.SklearnBatchCallback( keys={ "y_pred": "labels", "y_true": "targets" }, metric_fn="f1_score", metric_key="sk_f1", average="macro", zero_division=1, ) return callbacks
def train_experiment(device): with TemporaryDirectory() as logdir: # sample data num_users, num_features, num_items = int(1e4), int(1e1), 10 X = torch.rand(num_users, num_features) y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_items) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) class CustomRunner(dl.Runner): def handle_batch(self, batch): x, y = batch logits = self.model(x) self.batch = { "features": x, "logits": logits, "scores": torch.sigmoid(logits), "targets": y, } # model training runner = CustomRunner() runner.train( engine=dl.DeviceEngine(device), model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=1, verbose=False, callbacks=[ dl.CriterionCallback(input_key="logits", target_key="targets", metric_key="loss"), dl.AUCCallback(input_key="scores", target_key="targets"), dl.HitrateCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.MRRCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.MAPCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.NDCGCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.CheckpointCallback( logdir=logdir, loader_key="valid", metric_key="map01", minimize=False ), ], )
def get_callbacks(self, stage: str) -> Dict[str, dl.Callback]: return { "criterion": dl.CriterionCallback( metric_key="loss", input_key="logits", target_key="targets" ), "optimizer": dl.OptimizerCallback(metric_key="loss"), # "scheduler": dl.SchedulerCallback(loader_key="valid", metric_key="loss"), "checkpoint": dl.CheckpointCallback( self._logdir, loader_key="valid", metric_key="loss", minimize=True, save_n_best=3 ), "check_freezed": CheckRequiresGrad("layer1", "train_freezed", False), "check_unfreezed": CheckRequiresGrad("layer1", "train_unfreezed", True), }
def test(): """Test Notebook API""" dataset = MelFromDisk(path="data/test") dataloader = torch.utils.data.DataLoader(dataset) loaders = OrderedDict({"train": dataloader}) generator = Generator(80) discriminator = Discriminator() model = torch.nn.ModuleDict({ "generator": generator, "discriminator": discriminator }) optimizer = { "opt_g": torch.optim.Adam(generator.parameters()), "opt_d": torch.optim.Adam(discriminator.parameters()), } callbacks = { "loss_g": GeneratorLossCallback(), "loss_d": DiscriminatorLossCallback(), "o_g": dl.OptimizerCallback(metric_key="generator_loss", optimizer_key="opt_g"), "o_d": dl.OptimizerCallback(metric_key="discriminator_loss", optimizer_key="opt_d"), } runner = MelGANRunner() runner.train( model=model, loaders=loaders, optimizer=optimizer, callbacks=callbacks, check=True, main_metric="discriminator_loss", )
def train_experiment(device, engine=None): with TemporaryDirectory() as logdir: # sample data num_users, num_features, num_items = int(1e4), int(1e1), 10 X = torch.rand(num_users, num_features) y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_items) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) callbacks = [ dl.CriterionCallback(input_key="logits", target_key="targets", metric_key="loss"), dl.AUCCallback(input_key="scores", target_key="targets"), dl.HitrateCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.MRRCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.MAPCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.NDCGCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.CheckpointCallback( logdir=logdir, loader_key="valid", metric_key="map01", minimize=False ), ] if engine is None or not isinstance( engine, (dl.AMPEngine, dl.DataParallelAMPEngine, dl.DistributedDataParallelAMPEngine) ): callbacks.append(dl.AUCCallback(input_key="logits", target_key="targets")) # model training runner = CustomRunner() runner.train( engine=engine or dl.DeviceEngine(device), model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=1, verbose=False, callbacks=callbacks, )
def get_callbacks(self): return { "backward": dl.BackwardCallback(metric_key="loss"), "optimizer": dl.OptimizerCallback(metric_key="loss"), "checkpoint": dl.CheckpointCallback( self._logdir, loader_key="valid", metric_key="loss", minimize=True, topk=3, ), }
def get_callbacks(self, stage: str): return { "criterion": dl.CriterionCallback( metric_key="loss", input_key="logits", target_key="targets" ), "optimizer": dl.OptimizerCallback(metric_key="loss"), "checkpoint": dl.CheckpointCallback( self._logdir, loader_key="valid", metric_key="loss", minimize=True, save_n_best=3, load_on_stage_start="best", ), "test_model_load": CheckModelStateLoadAfterStages("second", self._logdir, "best.pth"), }
def test_is_running(): """Test if perplexity is running normal""" tok = AutoTokenizer.from_pretrained("distilbert-base-uncased") model = AutoModelWithLMHead.from_pretrained("distilbert-base-uncased") dataset = LanguageModelingDataset(texts, tok) collate_fn = DataCollatorForLanguageModeling(tok).collate_batch dataloader = torch.utils.data.DataLoader(dataset, collate_fn=collate_fn) optimizer = torch.optim.Adam(model.parameters(), lr=5e-5) runner = HuggingFaceRunner() runner.train( model=model, optimizer=optimizer, loaders={"train": dataloader}, callbacks={ "optimizer": dl.OptimizerCallback(), "perplexity": PerplexityMetricCallback(), }, check=True, )
def get_callbacks(self, stage: str): return { "criterion": dl.CriterionCallback( metric_key="loss", input_key="logits", target_key="targets" ), "optimizer": dl.OptimizerCallback(metric_key="loss"), "profiler": ProfilerCallback( loader_key="train", epoch=1, profiler_kwargs=dict( activities=[ torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA, ], with_stack=True, with_flops=True, ), tensorboard_path=self.profiler_tb_logs, export_chrome_trace_path=self.chrome_trace_logs, export_stacks_kwargs=self._export_stacks_kwargs, ), }
in_size=DATASETS[args.dataset]["in_size"], in_channels=DATASETS[args.dataset]["in_channels"], feature_dim=args.feature_dim, ) optimizer = optim.Adam(model.parameters(), lr=1e-2, weight_decay=1e-6) # define criterion criterion = BarlowTwinsLoss(offdiag_lambda=args.offdig_lambda) # and callbacks callbacks = [ dl.CriterionCallback( input_key="projection_left", target_key="projection_right", metric_key="loss" ), dl.BackwardCallback(metric_key="loss"), dl.OptimizerCallback(metric_key="loss"), dl.SklearnModelCallback( feature_key="embedding_origin", target_key="target", train_loader="train", valid_loaders="valid", model_fn=LogisticRegression, predict_key="sklearn_predict", predict_method="predict_proba", C=0.1, solver="saga", max_iter=200, ), dl.ControlFlowCallbackWrapper( dl.AccuracyCallback( target_key="target", input_key="sklearn_predict", topk=(1, 3)
def train_experiment(device): with TemporaryDirectory() as logdir: latent_dim = 128 generator = nn.Sequential( # We want to generate 128 coefficients to reshape into a 7x7x128 map nn.Linear(128, 128 * 7 * 7), nn.LeakyReLU(0.2, inplace=True), Lambda(lambda x: x.view(x.size(0), 128, 7, 7)), nn.ConvTranspose2d(128, 128, (4, 4), stride=(2, 2), padding=1), nn.LeakyReLU(0.2, inplace=True), nn.ConvTranspose2d(128, 128, (4, 4), stride=(2, 2), padding=1), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(128, 1, (7, 7), padding=3), nn.Sigmoid(), ) discriminator = nn.Sequential( nn.Conv2d(1, 64, (3, 3), stride=(2, 2), padding=1), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 128, (3, 3), stride=(2, 2), padding=1), nn.LeakyReLU(0.2, inplace=True), GlobalMaxPool2d(), Flatten(), nn.Linear(128, 1), ) model = {"generator": generator, "discriminator": discriminator} criterion = { "generator": nn.BCEWithLogitsLoss(), "discriminator": nn.BCEWithLogitsLoss() } optimizer = { "generator": torch.optim.Adam(generator.parameters(), lr=0.0003, betas=(0.5, 0.999)), "discriminator": torch.optim.Adam(discriminator.parameters(), lr=0.0003, betas=(0.5, 0.999)), } loaders = { "train": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32), } class CustomRunner(dl.Runner): def predict_batch(self, batch): batch_size = 1 # Sample random points in the latent space random_latent_vectors = torch.randn(batch_size, latent_dim).to(self.device) # Decode them to fake images generated_images = self.model["generator"]( random_latent_vectors).detach() return generated_images def handle_batch(self, batch): real_images, _ = batch batch_size = real_images.shape[0] # Sample random points in the latent space random_latent_vectors = torch.randn(batch_size, latent_dim).to(self.device) # Decode them to fake images generated_images = self.model["generator"]( random_latent_vectors).detach() # Combine them with real images combined_images = torch.cat([generated_images, real_images]) # Assemble labels discriminating real from fake images labels = torch.cat([ torch.ones((batch_size, 1)), torch.zeros((batch_size, 1)) ]).to(self.device) # Add random noise to the labels - important trick! labels += 0.05 * torch.rand(labels.shape).to(self.device) # Discriminator forward combined_predictions = self.model["discriminator"]( combined_images) # Sample random points in the latent space random_latent_vectors = torch.randn(batch_size, latent_dim).to(self.device) # Assemble labels that say "all real images" misleading_labels = torch.zeros( (batch_size, 1)).to(self.device) # Generator forward generated_images = self.model["generator"]( random_latent_vectors) generated_predictions = self.model["discriminator"]( generated_images) self.batch = { "combined_predictions": combined_predictions, "labels": labels, "generated_predictions": generated_predictions, "misleading_labels": misleading_labels, } runner = CustomRunner() runner.train( engine=dl.DeviceEngine(device), model=model, criterion=criterion, optimizer=optimizer, loaders=loaders, callbacks=[ dl.CriterionCallback( input_key="combined_predictions", target_key="labels", metric_key="loss_discriminator", criterion_key="discriminator", ), dl.CriterionCallback( input_key="generated_predictions", target_key="misleading_labels", metric_key="loss_generator", criterion_key="generator", ), dl.OptimizerCallback( model_key="generator", optimizer_key="generator", metric_key="loss_generator", ), dl.OptimizerCallback( model_key="discriminator", optimizer_key="discriminator", metric_key="loss_discriminator", ), ], valid_loader="train", valid_metric="loss_generator", minimize_valid_metric=True, num_epochs=1, verbose=False, logdir=logdir, ) runner.predict_batch(None)[0, 0].cpu().numpy()
def train_experiment(engine=None): with TemporaryDirectory() as logdir: # sample data num_users, num_features, num_items = int(1e4), int(1e1), 10 X = torch.rand(num_users, num_features) y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_items) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) callbacks = [ dl.BatchTransformCallback( input_key="logits", output_key="scores", transform=torch.sigmoid, scope="on_batch_end", ), dl.CriterionCallback(input_key="logits", target_key="targets", metric_key="loss"), dl.HitrateCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)), dl.MRRCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)), dl.MAPCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)), dl.NDCGCallback(input_key="scores", target_key="targets", topk=(1, 3)), dl.BackwardCallback(metric_key="loss"), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.CheckpointCallback(logdir=logdir, loader_key="valid", metric_key="map01", minimize=False), ] if isinstance(engine, dl.CPUEngine): callbacks.append( dl.AUCCallback(input_key="logits", target_key="targets")) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss", ) runner.train( engine=engine, model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=1, verbose=False, callbacks=callbacks, )
item_num = len(train_dataset[0]) model = MultiVAE([200, 600, item_num], dropout=0.5) optimizer = optim.Adam(model.parameters(), lr=0.001) lr_scheduler = StepLR(optimizer, step_size=20, gamma=0.1) engine = dl.Engine() hparams = { "anneal_cap": 0.2, "total_anneal_steps": 6000, } callbacks = [ dl.NDCGCallback("logits", "targets", [20, 50, 100]), dl.MAPCallback("logits", "targets", [20, 50, 100]), dl.MRRCallback("logits", "targets", [20, 50, 100]), dl.HitrateCallback("logits", "targets", [20, 50, 100]), dl.BackwardCallback("loss"), dl.OptimizerCallback("loss", accumulation_steps=1), dl.SchedulerCallback(), ] runner = RecSysRunner() runner.train( model=model, optimizer=optimizer, engine=engine, hparams=hparams, scheduler=lr_scheduler, loaders=loaders, num_epochs=100, verbose=True, timeit=False, callbacks=callbacks,
def main(args): train_dataset = TorchvisionDatasetWrapper( MNIST(root="./", download=True, train=True, transform=ToTensor()) ) val_dataset = TorchvisionDatasetWrapper( MNIST(root="./", download=True, train=False, transform=ToTensor()) ) train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True) val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=64) loaders = {"train": train_dataloader, "valid": val_dataloader} utils.set_global_seed(args.seed) net = nn.Sequential( Flatten(), nn.Linear(28 * 28, 300), nn.ReLU(), nn.Linear(300, 100), nn.ReLU(), nn.Linear(100, 10), ) initial_state_dict = net.state_dict() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(net.parameters()) if args.device is not None: engine = dl.DeviceEngine(args.device) else: engine = None if args.vanilla_pruning: runner = dl.SupervisedRunner(engine=engine) runner.train( model=net, criterion=criterion, optimizer=optimizer, loaders=loaders, callbacks=[ dl.AccuracyCallback(input_key="logits", target_key="targets", num_classes=10), ], logdir="./logdir", num_epochs=args.num_epochs, load_best_on_end=True, valid_metric="accuracy01", minimize_valid_metric=False, valid_loader="valid", ) pruning_fn = partial( utils.pruning.prune_model, pruning_fn=args.pruning_method, amount=args.amount, keys_to_prune=["weights"], dim=args.dim, l_norm=args.n, ) acc, amount = validate_model( runner, pruning_fn=pruning_fn, loader=loaders["valid"], num_sessions=args.num_sessions ) torch.save(acc, "accuracy.pth") torch.save(amount, "amount.pth") else: runner = PruneRunner(num_sessions=args.num_sessions, engine=engine) callbacks = [ dl.AccuracyCallback(input_key="logits", target_key="targets", num_classes=10), dl.PruningCallback( args.pruning_method, keys_to_prune=["weight"], amount=args.amount, remove_reparametrization_on_stage_end=False, ), dl.CriterionCallback(input_key="logits", target_key="targets", metric_key="loss"), dl.OptimizerCallback(metric_key="loss"), ] if args.lottery_ticket: callbacks.append(LotteryTicketCallback(initial_state_dict=initial_state_dict)) if args.kd: net.load_state_dict(torch.load(args.state_dict)) callbacks.append( PrepareForFinePruningCallback(probability_shift=args.probability_shift) ) callbacks.append(KLDivCallback(temperature=4, student_logits_key="logits")) callbacks.append( MetricAggregationCallback( prefix="loss", metrics={"loss": 0.1, "kl_div_loss": 0.9}, mode="weighted_sum" ) ) runner.train( model=net, criterion=criterion, optimizer=optimizer, loaders=loaders, callbacks=callbacks, logdir=args.logdir, num_epochs=args.num_epochs, load_best_on_end=True, valid_metric="accuracy01", minimize_valid_metric=False, valid_loader="valid", )
def train_experiment(device): with TemporaryDirectory() as logdir: # sample data num_samples, num_features, num_classes1, num_classes2 = int(1e4), int( 1e1), 4, 10 X = torch.rand(num_samples, num_features) y1 = (torch.rand(num_samples, ) * num_classes1).to(torch.int64) y2 = (torch.rand(num_samples, ) * num_classes2).to(torch.int64) # pytorch loaders dataset = TensorDataset(X, y1, y2) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} class CustomModule(nn.Module): def __init__(self, in_features: int, out_features1: int, out_features2: int): super().__init__() self.shared = nn.Linear(in_features, 128) self.head1 = nn.Linear(128, out_features1) self.head2 = nn.Linear(128, out_features2) def forward(self, x): x = self.shared(x) y1 = self.head1(x) y2 = self.head2(x) return y1, y2 # model, criterion, optimizer, scheduler model = CustomModule(num_features, num_classes1, num_classes2) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters()) scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [2]) class CustomRunner(dl.Runner): def handle_batch(self, batch): x, y1, y2 = batch y1_hat, y2_hat = self.model(x) self.batch = { "features": x, "logits1": y1_hat, "logits2": y2_hat, "targets1": y1, "targets2": y2, } # model training runner = CustomRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=1, verbose=False, callbacks=[ dl.CriterionCallback(metric_key="loss1", input_key="logits1", target_key="targets1"), dl.CriterionCallback(metric_key="loss2", input_key="logits2", target_key="targets2"), dl.MetricAggregationCallback(prefix="loss", metrics=["loss1", "loss2"], mode="mean"), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.AccuracyCallback( input_key="logits1", target_key="targets1", num_classes=num_classes1, prefix="one_", ), dl.AccuracyCallback( input_key="logits2", target_key="targets2", num_classes=num_classes2, prefix="two_", ), dl.ConfusionMatrixCallback( input_key="logits1", target_key="targets1", num_classes=num_classes1, prefix="one_cm", ), # catalyst[ml] required dl.ConfusionMatrixCallback( input_key="logits2", target_key="targets2", num_classes=num_classes2, prefix="two_cm", ), # catalyst[ml] required dl.CheckpointCallback( "./logs/one", loader_key="valid", metric_key="one_accuracy", minimize=False, save_n_best=1, ), dl.CheckpointCallback( "./logs/two", loader_key="valid", metric_key="two_accuracy03", minimize=False, save_n_best=3, ), ], loggers={ "console": dl.ConsoleLogger(), "tb": dl.TensorboardLogger("./logs/tb") }, )
total_preds = [vectorizer.devectorize(i) for i in seq] total_tags = [vectorizer.devectorize(i) for i in tags] self.input = { 'x': sents, 'x_char': chars, 'y': tags, 'total_tags': total_tags } # 'mask': mask, self.output = {'preds': total_preds} callbacks = { "optimizer": dl.OptimizerCallback(metric_key="loss", accumulation_steps=1, grad_clip_params=None), "criterion": dl.CriterionCallback( input_key=['x', 'x_char', 'y'], #'mask': mask, output_key=[]), "metric": dl.MetricCallback(input_key='total_tags', output_key='preds', prefix='F1_token', metric_fn=ner_token_f1), "checkpoints": CheckpointCallback(save_n_best=3), } """ callbacks = [
def train_experiment(engine=None): with TemporaryDirectory() as logdir: # sample data num_samples, num_features, num_classes1, num_classes2 = int(1e4), int( 1e1), 4, 10 X = torch.rand(num_samples, num_features) y1 = (torch.rand(num_samples) * num_classes1).to(torch.int64) y2 = (torch.rand(num_samples) * num_classes2).to(torch.int64) # pytorch loaders dataset = TensorDataset(X, y1, y2) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = CustomModule(num_features, num_classes1, num_classes2) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters()) scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [2]) callbacks = [ dl.CriterionCallback(metric_key="loss1", input_key="logits1", target_key="targets1"), dl.CriterionCallback(metric_key="loss2", input_key="logits2", target_key="targets2"), dl.MetricAggregationCallback(metric_key="loss", metrics=["loss1", "loss2"], mode="mean"), dl.BackwardCallback(metric_key="loss"), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.AccuracyCallback( input_key="logits1", target_key="targets1", num_classes=num_classes1, prefix="one_", ), dl.AccuracyCallback( input_key="logits2", target_key="targets2", num_classes=num_classes2, prefix="two_", ), dl.CheckpointCallback( "./logs/one", loader_key="valid", metric_key="one_accuracy01", minimize=False, topk=1, ), dl.CheckpointCallback( "./logs/two", loader_key="valid", metric_key="two_accuracy03", minimize=False, topk=3, ), ] if SETTINGS.ml_required: # catalyst[ml] required callbacks.append( dl.ConfusionMatrixCallback( input_key="logits1", target_key="targets1", num_classes=num_classes1, prefix="one_cm", )) # catalyst[ml] required callbacks.append( dl.ConfusionMatrixCallback( input_key="logits2", target_key="targets2", num_classes=num_classes2, prefix="two_cm", )) # model training runner = CustomRunner() runner.train( engine=engine, model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=1, verbose=False, callbacks=callbacks, loggers={ "console": dl.ConsoleLogger(), "tb": dl.TensorboardLogger("./logs/tb"), }, )
latent_dim).to(self.device) # Assemble labels that say "all real images" misleading_labels = torch.zeros((batch_size, 1)).to(self.device) # Train the generator generated_images = self.model["generator"](random_latent_vectors) predictions = self.model["discriminator"](generated_images) batch_metrics["loss_generator"] = F.binary_cross_entropy_with_logits( predictions, misleading_labels) self.state.batch_metrics.update(**batch_metrics) runner = CustomRunner() runner.train( model=model, optimizer=optimizer, loaders=loaders, callbacks=[ dl.OptimizerCallback(optimizer_key="generator", metric_key="loss_generator"), dl.OptimizerCallback(optimizer_key="discriminator", metric_key="loss_discriminator"), ], main_metric="loss_generator", num_epochs=20, verbose=True, logdir="./logs_gan", check=True, )
def train_experiment(device): with TemporaryDirectory() as logdir: teacher = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10)) student = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10)) criterion = { "cls": nn.CrossEntropyLoss(), "kl": nn.KLDivLoss(reduction="batchmean") } optimizer = optim.Adam(student.parameters(), lr=0.02) loaders = { "train": DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32), "valid": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32), } class DistilRunner(dl.Runner): def handle_batch(self, batch): x, y = batch teacher.eval() # let's manually set teacher model to eval mode with torch.no_grad(): t_logits = self.model["teacher"](x) s_logits = self.model["student"](x) self.batch = { "t_logits": t_logits, "s_logits": s_logits, "targets": y, "s_logprobs": F.log_softmax(s_logits, dim=-1), "t_probs": F.softmax(t_logits, dim=-1), } runner = DistilRunner() # model training runner.train( engine=dl.DeviceEngine(device), model={ "teacher": teacher, "student": student }, criterion=criterion, optimizer=optimizer, loaders=loaders, num_epochs=1, logdir=logdir, verbose=True, callbacks=[ dl.AccuracyCallback(input_key="t_logits", target_key="targets", num_classes=2, prefix="teacher_"), dl.AccuracyCallback(input_key="s_logits", target_key="targets", num_classes=2, prefix="student_"), dl.CriterionCallback( input_key="s_logits", target_key="targets", metric_key="cls_loss", criterion_key="cls", ), dl.CriterionCallback( input_key="s_logprobs", target_key="t_probs", metric_key="kl_div_loss", criterion_key="kl", ), dl.MetricAggregationCallback( prefix="loss", metrics=["kl_div_loss", "cls_loss"], mode="mean"), dl.OptimizerCallback(metric_key="loss", model_key="student"), dl.CheckpointCallback( logdir=logdir, loader_key="valid", metric_key="loss", minimize=True, save_n_best=3, ), ], )
def test_runner(): """Test that runner executes""" train_df = pd.read_csv("data/train.csv") valid_df = pd.read_csv("data/valid.csv") teacher_config = AutoConfig.from_pretrained("bert-base-uncased", output_hidden_states=True, output_logits=True) teacher = BertForMaskedLM.from_pretrained("bert-base-uncased", config=teacher_config) student_config = AutoConfig.from_pretrained( "distilbert-base-uncased", output_hidden_states=True, output_logits=True, ) student = DistilBertForMaskedLM.from_pretrained("distilbert-base-uncased", config=student_config) tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") train_dataset = LanguageModelingDataset(train_df["text"], tokenizer) valid_dataset = LanguageModelingDataset(valid_df["text"], tokenizer) collate_fn = DataCollatorForLanguageModeling(tokenizer) train_dataloader = DataLoader(train_dataset, collate_fn=collate_fn, batch_size=2) valid_dataloader = DataLoader(valid_dataset, collate_fn=collate_fn, batch_size=2) loaders = {"train": train_dataloader, "valid": valid_dataloader} callbacks = { "masked_lm_loss": MaskedLanguageModelCallback(), "mse_loss": MSELossCallback(), "cosine_loss": CosineLossCallback(), "kl_div_loss": KLDivLossCallback(), "loss": MetricAggregationCallback( prefix="loss", mode="weighted_sum", metrics={ "cosine_loss": 1.0, "masked_lm_loss": 1.0, "kl_div_loss": 1.0, "mse_loss": 1.0, }, ), "optimizer": dl.OptimizerCallback(), "perplexity": PerplexityMetricCallbackDistillation(), } model = torch.nn.ModuleDict({"teacher": teacher, "student": student}) runner = DistilMLMRunner() optimizer = torch.optim.Adam(model.parameters(), lr=5e-5) runner.train( model=model, optimizer=optimizer, loaders=loaders, verbose=True, check=True, callbacks=callbacks, ) assert True
def main(): """ Docs. """ generator = nn.Sequential(nn.Linear(128, 28 * 28), nn.Tanh()) discriminator = nn.Sequential(nn.Linear(28 * 28, 1), nn.Sigmoid()) model = nn.ModuleDict({ "generator": generator, "discriminator": discriminator }) generator_optimizer = torch.optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999)) discriminator_optimizer = torch.optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999)) optimizer = { "generator": generator_optimizer, "discriminator": discriminator_optimizer, } loaders = { "train": DataLoader( MNIST( os.getcwd(), train=False, download=True, transform=transforms.ToTensor(), ), batch_size=32, ), "valid": DataLoader( MNIST( os.getcwd(), train=False, download=True, transform=transforms.ToTensor(), ), batch_size=32, ), } runner = CustomRunner() runner.train( model=model, optimizer=optimizer, loaders=loaders, callbacks=[ dl.OptimizerCallback(optimizer_key="generator", loss_key="loss_generator"), dl.OptimizerCallback(optimizer_key="discriminator", loss_key="loss_discriminator"), ], main_metric="loss_generator", num_epochs=5, logdir="./logs/gan", verbose=True, check=True, )
def train_experiment(device, engine=None): with TemporaryDirectory() as logdir: # latent_dim = 128 # generator = nn.Sequential( # # We want to generate 128 coefficients to reshape into a 7x7x128 map # nn.Linear(128, 128 * 7 * 7), # nn.LeakyReLU(0.2, inplace=True), # Lambda(lambda x: x.view(x.size(0), 128, 7, 7)), # nn.ConvTranspose2d(128, 128, (4, 4), stride=(2, 2), padding=1), # nn.LeakyReLU(0.2, inplace=True), # nn.ConvTranspose2d(128, 128, (4, 4), stride=(2, 2), padding=1), # nn.LeakyReLU(0.2, inplace=True), # nn.Conv2d(128, 1, (7, 7), padding=3), # nn.Sigmoid(), # ) # discriminator = nn.Sequential( # nn.Conv2d(1, 64, (3, 3), stride=(2, 2), padding=1), # nn.LeakyReLU(0.2, inplace=True), # nn.Conv2d(64, 128, (3, 3), stride=(2, 2), padding=1), # nn.LeakyReLU(0.2, inplace=True), # GlobalMaxPool2d(), # Flatten(), # nn.Linear(128, 1), # ) latent_dim = 32 generator = nn.Sequential( nn.Linear(latent_dim, 28 * 28), Lambda(_ddp_hack), nn.Sigmoid(), ) discriminator = nn.Sequential(Flatten(), nn.Linear(28 * 28, 1)) model = {"generator": generator, "discriminator": discriminator} criterion = { "generator": nn.BCEWithLogitsLoss(), "discriminator": nn.BCEWithLogitsLoss() } optimizer = { "generator": torch.optim.Adam(generator.parameters(), lr=0.0003, betas=(0.5, 0.999)), "discriminator": torch.optim.Adam(discriminator.parameters(), lr=0.0003, betas=(0.5, 0.999)), } loaders = { "train": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32), } runner = CustomRunner(latent_dim) runner.train( engine=engine or dl.DeviceEngine(device), model=model, criterion=criterion, optimizer=optimizer, loaders=loaders, callbacks=[ dl.CriterionCallback( input_key="combined_predictions", target_key="labels", metric_key="loss_discriminator", criterion_key="discriminator", ), dl.CriterionCallback( input_key="generated_predictions", target_key="misleading_labels", metric_key="loss_generator", criterion_key="generator", ), dl.OptimizerCallback( model_key="generator", optimizer_key="generator", metric_key="loss_generator", ), dl.OptimizerCallback( model_key="discriminator", optimizer_key="discriminator", metric_key="loss_discriminator", ), ], valid_loader="train", valid_metric="loss_generator", minimize_valid_metric=True, num_epochs=1, verbose=False, logdir=logdir, ) if not isinstance(engine, dl.DistributedDataParallelEngine): runner.predict_batch(None)[0, 0].cpu().numpy()
callbacks = { "masked_lm_loss": MaskedLanguageModelCallback(), "mse_loss": MSELossCallback(), "cosine_loss": CosineLossCallback(), "kl_div_loss": KLDivLossCallback(), "loss": MetricAggregationCallback( prefix="loss", mode="weighted_sum", metrics={ "cosine_loss": 1.0, "masked_lm_loss": 1.0, "kl_div_loss": 1.0, "mse_loss": 1.0 } ), "optimizer": dl.OptimizerCallback(), "perplexity": PerplexityMetricCallbackDistillation() } runner = DistilMLMRunner(device=torch.device("cuda")) optimizer = torch.optim.Adam(model.parameters(), lr=5e-5) runner.train( model=model, optimizer=optimizer, loaders=loaders, verbose=True, check=True, callbacks=callbacks, )