Exemple #1
0
 def _compute_metric(self, state: State):
     criterion_kwargs = {
         self.real_data_criterion_key:
         state.batch_in[self.input_key],
         self.fake_data_criterion_key:
         state.batch_out[self.output_key],
         self.critic_criterion_key:
         state.model[self.critic_model_key],
         self.condition_args_criterion_key:
         [state.batch_in[key] for key in self.condition_keys]
     }
     criterion = state.get_attr("criterion", self.criterion_key)
     return criterion(**criterion_kwargs)
Exemple #2
0
    def on_batch_end(self, state: State):
        """On batch end event"""
        super().on_batch_end(state)
        if not state.is_train_loader:
            return

        optimizer = state.get_attr(key="optimizer",
                                   inner_key=self.optimizer_key)

        need_gradient_step = \
            self._accumulation_counter % self.accumulation_steps == 0

        if need_gradient_step:
            for group in optimizer.param_groups:
                for param in group["params"]:
                    param.data.clamp_(min=-self.weight_clamp_value,
                                      max=self.weight_clamp_value)