def grad_norm(*, model: Model, prefix: str, norm_type: int) -> Dict: """Computes gradient norms for a given model. Args: model (Model): model which gradients to be saved. prefix (str): prefix for keys in resulting dictionary. norm_type (int): norm type of gradient norm. Returns: Dict: dictionary in which gradient norms are stored. """ if isinstance(model, (DataParallel, DistributedDataParallel)): model = model.module total_norm = 0.0 grad_norm = {} for tag, value in model.named_parameters(): tag = tag.replace(".", "/") metrics_tag = f"{prefix}/{tag}" param_norm = value.grad.data.norm(norm_type).item() total_norm += param_norm ** norm_type grad_norm[metrics_tag] = param_norm total_norm = total_norm ** (1.0 / norm_type) metrics_tag = f"{prefix}/total" grad_norm[metrics_tag] = total_norm return grad_norm
def set_requires_grad(model: Model, requires_grad: Union[bool, Dict[str, bool]]): """Sets the ``requires_grad`` value for all model parameters. Example:: >>> model = SimpleModel() >>> set_requires_grad(model, requires_grad=True) >>> # or >>> model = SimpleModel() >>> set_requires_grad(model, requires_grad={""}) Args: model (torch.nn.Module): model requires_grad (Union[bool, Dict[str, bool]]): value """ if isinstance(requires_grad, dict): for name, param in model.named_parameters(): assert (name in requires_grad ), f"Parameter `{name}` does not exist in requires_grad" param.requires_grad = requires_grad[name] else: requires_grad = bool(requires_grad) for param in model.parameters(): param.requires_grad = requires_grad
def process_model_params( model: Model, layerwise_params: Dict[str, dict] = None, no_bias_weight_decay: bool = True, lr_scaling: float = 1.0, ) -> List[Union[torch.nn.Parameter, dict]]: """Gains model parameters for ``torch.optim.Optimizer``. Args: model (torch.nn.Module): Model to process layerwise_params (Dict): Order-sensitive dict where each key is regex pattern and values are layer-wise options for layers matching with a pattern no_bias_weight_decay (bool): If true, removes weight_decay for all ``bias`` parameters in the model lr_scaling (float): layer-wise learning rate scaling, if 1.0, learning rates will not be scaled Returns: iterable: parameters for an optimizer Example:: >>> model = catalyst.contrib.models.segmentation.ResnetUnet() >>> layerwise_params = collections.OrderedDict([ >>> ("conv1.*", dict(lr=0.001, weight_decay=0.0003)), >>> ("conv.*", dict(lr=0.002)) >>> ]) >>> params = process_model_params(model, layerwise_params) >>> optimizer = torch.optim.Adam(params, lr=0.0003) """ params = list(model.named_parameters()) layerwise_params = layerwise_params or collections.OrderedDict() model_params = [] for name, parameters in params: options = {} for pattern, options_ in layerwise_params.items(): if re.match(pattern, name) is not None: # all new LR rules write on top of the old ones options = merge_dicts(options, options_) # no bias decay from https://arxiv.org/abs/1812.01187 if no_bias_weight_decay and name.endswith("bias"): options["weight_decay"] = 0.0 # lr linear scaling from https://arxiv.org/pdf/1706.02677.pdf if "lr" in options: options["lr"] *= lr_scaling model_params.append({"params": parameters, **options}) return model_params
def get_requires_grad(model: Model): """Gets the ``requires_grad`` value for all model parameters. Example:: >>> model = SimpleModel() >>> requires_grad = get_requires_grad(model) Args: model (torch.nn.Module): model Returns: requires_grad (Dict[str, bool]): value """ requires_grad = {} for name, param in model.named_parameters(): requires_grad[name] = param.requires_grad return requires_grad