def __getitem__(self, idx: int) -> dict:


        ####
        result = {}
        image_path = self.images[idx]
        image = utils.imread(image_path)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

        if np.shape(image)[1] != 512:
            image = cv2.resize(image, (512, 512))


        if self.masks is not None:
            mask = utils.imread(self.masks[idx])
            if np.shape(mask)[1] != 512:
                mask = cv2.resize(mask, (512, 512))
            # extract certain classes from mask (e.g. cars)
            mask_kidney = mask[:, :, 0] == 255
            mask_tumor = mask[:, :, 1] == 255
            masks = [mask_kidney, mask_tumor]
            mask = np.stack(masks, axis=-1).astype('float')
            result["mask"] = mask

        result["image"] = image
        if self.transforms is not None:
            result = self.transforms(**result)

        result["filename"] = image_path.name

        return result
Exemple #2
0
    def preprocess(self, image_path: Path):
        try:
            if self.extension in ("jpg", "JPG", "jpeg", "JPEG"):
                image = np.array(
                    imread(uri=image_path,
                           grayscale=self.grayscale,
                           expand_dims=self.expand_dims,
                           exifrotate=not self.clear_exif))
            else:  # imread does not have exifrotate for non-jpeg type
                image = np.array(
                    imread(uri=image_path,
                           grayscale=self.grayscale,
                           expand_dims=self.expand_dims))
        except Exception as e:
            print(f"Cannot read file {image_path}, exception: {e}")
            return

        if self.max_size is not None:
            image = longest_max_size(image, self.max_size, self.interpolation)

        target_path = self.out_dir / image_path.relative_to(self.in_dir)
        target_path.parent.mkdir(parents=True, exist_ok=True)

        image = image.clip(0, 255).round().astype(np.uint8)
        imwrite(target_path, image)
Exemple #3
0
def show(index: int,
         images: List[Path],
         masks: List[Path],
         transforms=None) -> None:
    image_path = images[index]
    name = image_path.name

    image = utils.imread(image_path)
    mask = utils.imread(masks[index])

    if transforms is not None:
        temp = transforms(image=image, mask=mask)
        image = temp["image"]
        mask = temp["mask"]

    show_examples(name, image, mask)
Exemple #4
0
    def preprocess(self, filepath: Path) -> None:
        """Process one file."""
        try:
            image = np.array(utils.imread(filepath))
        except Exception as e:
            logger.warning(f"Cannot read file {filepath}, exception: {e}")
            return

        filename, extention = filepath.stem, filepath.suffix
        out_dir = (self.out_dir / filepath.relative_to(self.in_dir)).parent
        out_dir.mkdir(parents=True, exist_ok=True)

        patches = cut_with_overlap(
            image=image.clip(0, 255).round().astype(np.uint8),
            patch_height=self.patch_height,
            patch_width=self.patch_width,
            height_overlap=self.height_overlap,
            width_overlap=self.width_overlap,
            min_height=self.min_height,
            min_width=self.min_width,
        )

        for index, patch in enumerate(patches):
            out_path = out_dir / f"{filename}_{index}{extention}"
            utils.imwrite(uri=out_path, im=patch)
Exemple #5
0
    def __getitem__(self, idx: int) -> dict:
        image_path = self.images[idx]
        name = image_path.name
        image = utils.imread(image_path)
        mask = None
        if self.transforms is not None:
            if self.masks is not None:
                mask = imread(self.mask_path / f"{os.path.splitext(name)[0]}.png")
                transformed = self.transforms(image=image, mask=mask)
                image_tf = transformed["image"]
                mask_tf = transformed["mask"]
                result = {"image": image_tf, "mask": mask_tf}

            else:
                transformed = self.transforms(
                    image=image,
                )
                image_tf = transformed["image"]
                result = {"image": image_tf}
        else:
            result = {"image": image, "mask": mask}
        result["filename_img"] = image_path.name
        result["filename_mask"] = f"{os.path.splitext(name)[0]}.png"

        return result
Exemple #6
0
    def preprocess(self, image_path: Path):
        """@TODO: Docs. Contribution is welcome."""
        try:
            _, extension = os.path.splitext(image_path)
            kwargs = {
                "grayscale": self.grayscale,
                "expand_dims": self.expand_dims,
            }
            if extension.lower() in {"jpg", "jpeg"}:
                # imread does not have exifrotate for non-jpeg type
                kwargs["exifrotate"] = not self.clear_exif

            image = np.array(imread(uri=image_path, **kwargs))
        except Exception as e:
            print(f"Cannot read file {image_path}, exception: {e}")
            return

        if self.max_size is not None:
            image = longest_max_size(image, self.max_size, self.interpolation)

        target_path = self.out_dir / image_path.relative_to(self.in_dir)
        target_path.parent.mkdir(parents=True, exist_ok=True)

        image = image.clip(0, 255).round().astype(np.uint8)
        imwrite(target_path, image)
Exemple #7
0
def save_image(image, mask, path, orig_shape):
    mask_path = f"{PurePath(path).parent}/{PurePath(path).stem}_mask.png"
    colorize_mask(mask, palete).save(mask_path)
    image = albu.Resize(512, 512)(image=image)['image']

    mask = imread(mask_path)
    out_im = image // 2 + mask // 2
    io.imsave(path, albu.Resize(*orig_shape)(image=out_im)['image'])
    return mask_path
 def read_random_images(data,
                        transforms=None) -> List[Tuple[str, np.ndarray]]:
     data_ = np.random.choice(data, size=4)
     result = []
     for d in data_:
         image = imread(d['filepath'])
         if transforms is not None:
             image = transforms(image=image)['image']
         result.append((d['class'], image))
     return result
Exemple #9
0
def test_imread():
    """Tests ``imread`` functionality."""
    jpg_rgb_uri = (
        "https://raw.githubusercontent.com/catalyst-team/catalyst-pics/master"
        "/test_images/catalyst_icon.jpg")
    jpg_grs_uri = (
        "https://raw.githubusercontent.com/catalyst-team/catalyst-pics/master"
        "/test_images/catalyst_icon_grayscale.jpg")
    png_rgb_uri = (
        "https://raw.githubusercontent.com/catalyst-team/catalyst-pics/master"
        "/test_images/catalyst_icon.png")
    png_grs_uri = (
        "https://raw.githubusercontent.com/catalyst-team/catalyst-pics/master"
        "/test_images/catalyst_icon_grayscale.png")

    for uri in [jpg_rgb_uri, jpg_grs_uri, png_rgb_uri, png_grs_uri]:
        img = utils.imread(uri)
        assert img.shape == (400, 400, 3)
        img = utils.imread(uri, grayscale=True)
        assert img.shape == (400, 400, 1)
Exemple #10
0
def show_random_transform(transforms):
    # transforms = compose([resize_transforms(), hard_transforms(), post_transforms()])
    length = len(ALL_IMAGES)
    index = random.randint(0, length - 1)
    IMG = ALL_IMAGES[index]
    
    plt.figure(figsize=(20, 28))
    plt.subplot(1, 2, 1)
    plt.imshow(utils.imread(IMG))
    plt.title(f"Image: {IMG}")
    
    transformed = transforms(image=utils.imread(IMG))
    transformed_image = transformed["image"]
    TRANSFORMED = np.moveaxis((np.array(transformed_image) * 255).astype("uint8"), 0, 2)

    plt.subplot(1, 2, 2)
    plt.imshow(Image.fromarray(TRANSFORMED))
    plt.title(f"Transformed")

    Image.fromarray(TRANSFORMED).save("prova.png")
Exemple #11
0
def show(index: int, images: List[Path], masks: List[Path], transforms=None) -> None:
    image_path = images[index]
    name = image_path.name
    image = utils.imread(image_path)
    mask = imread(train_mask_path / f"{os.path.splitext(name)[0]}_mask.png")
    #     mask = utils.imread(masks[index])

    if transforms is not None:
        temp = transforms(image=image, mask=mask)
        image = temp["image"]
        mask = temp["mask"]

    show_examples(name, image, mask)
Exemple #12
0
    def preprocess(self, image_path: Path):
        image = imread(image_path, rootpath=str(self.in_dir))
        heigth, width = image.shape[:2]
        mask = np.zeros((heigth, width, len(self.index2color)), dtype=np.uint8)
        for index in range(len(self.index2color)):
            mask[np.all((image == self.index2color[index]), axis=-1),
                 index] = 255

        target_path = self.out_dir / f"{id_from_fname(image_path)}.tiff"
        target_path.parent.mkdir(parents=True, exist_ok=True)

        mimwrite_with_meta(target_path, np.dsplit(mask, mask.shape[2]),
                           {"compress": 9})
def compute_segmenation_weight(img_path, img_width, img_height, contrast=1):
    """
    Function calculate weight matrix for content loss using fully 
    convolutional neural network
    Parameters:
    ----------
    img_path : str
        Path to input picture
    img_width : int
        Width of image
    img_height :int   
        Height of image

    contrast: int
        Contrast coefficient. Default value equal to one.
        Bigger value means, that front object will have bigger values in weight matrix.
    """
    default_image_size = 320

    def pre_transforms(image_size=default_image_size):
        return [albu.Resize(image_size, image_size, p=1)]

    def post_transforms():
        # we use ImageNet image normalization
        # and convert it to torch.Tensor
        return [albu.Normalize(), ToTensor()]

    def compose(transforms_to_compose):
        # combine all augmentations into one single pipeline
        result = albu.Compose(
            [item for sublist in transforms_to_compose for item in sublist])
        return result

    valid_transforms = compose([pre_transforms(), post_transforms()])
    model = smp.FPN(encoder_name="resnext101_32x8d", classes=1)
    model.load_state_dict(torch.load(f'./models/model.pth'))
    model.eval()

    image = {'image': utils.imread(img_path)}
    x = valid_transforms(**image)['image']
    y = model.predict(x.view(1, 3, 320, 320))[0, 0].sigmoid().numpy()
    w = resize(y, (img_height, img_width), preserve_range=True)
    w = w / w.sum() * img_width * img_height
    wn = np.clip(contrast * (w - w.mean()) + w.mean(), 1e-1,
                 w.sum())[np.newaxis, np.newaxis, :, :]
    wn = torch.from_numpy(wn).cuda().float()

    del model, x, y, w
    return wn
    def prepare(self):
        image_path = self.image
        scale = 1 / self.downscale_factor
        interpolation = self.interpolation

        img_input_target = imread(image_path)
        img_input = cv2.resize(
            img_input_target,
            None,
            None,
            fx=scale,
            fy=scale,
            interpolation=default_interpolations[interpolation])

        return img_input, img_input_target
Exemple #15
0
    def __getitem__(self, idx: int) -> dict:
        image_path = self.images[idx]
        name = image_path.name
        image = utils.imread(image_path)

        result = {"image": image}

        if self.masks is not None:
            mask = imread(train_mask_path / f"{os.path.splitext(name)[0]}_mask.png")
            result["mask"] = mask

        if self.transforms is not None:
            result = self.transforms(**result)

        result["filename"] = image_path.name

        return result
Exemple #16
0
    def __call__(self, element):
        """Reads a row from your annotations dict with filename and
        transfer it to an image

        Args:
            element: elem in your dataset

        Returns:
            np.ndarray: Image
        """
        image_name = str(element[self.input_key])
        img = utils.imread(
            image_name, rootpath=self.rootpath, grayscale=self.grayscale
        )

        output = {self.output_key: img}
        return output
    def __getitem__(self, idx: int) -> dict:
        """Main method"""
        image_path = self.images[idx]
        image = utils.imread(image_path)

        result = {"image": image}

        if self.masks is not None:
            mask = gif_imread(self.masks[idx])
            result["mask"] = mask

        if self.transforms is not None:
            result = self.transforms(result)

        result["filename"] = image_path.name

        return result
Exemple #18
0
    def __call__(self, row):
        """Reads a row from your annotations dict with filename and
        transfer it to an image

        Args:
            row: elem in your dataset.

        Returns:
            np.ndarray: Image
        """
        image_name = str(row[self.input_key])
        img = imread(image_name,
                     rootpath=self.datapath,
                     grayscale=self.grayscale)

        result = {self.output_key: img}
        return result
Exemple #19
0
    def preprocess(self, image_path: Path):
        try:
            image = np.array(
                imread(uri=image_path,
                       grayscale=self.grayscale,
                       expand_dims=self.expand_dims,
                       exifrotate=not self.clear_exif))
        except Exception:
            return

        if self.max_size is not None:
            image = longest_max_size(image, self.max_size, self.interpolation)

        target_path = self.out_dir / image_path.relative_to(self.in_dir)
        target_path.parent.mkdir(parents=True, exist_ok=True)

        image = image.clip(0, 255).round().astype(np.uint8)
        imwrite(target_path, image)
Exemple #20
0
def main():
    args = parse_arguments()
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = DeepLab(num_classes=18, pretrained=False)
    model.load_state_dict(torch.load(args.model_path, map_location=device)['model_state_dict'])
    model.to(device)
    model.eval()
    image = imread(args.image_path)
    valid_transformation = albu.Compose(
        [albu.Resize(512, 512), albu.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ToTensor()]
    )

    im = valid_transformation(image=image)["image"].unsqueeze(0)
    prediction = model(im.to(device))
    prediction = prediction.squeeze(0).detach().cpu().numpy()

    prediction = F.softmax(torch.from_numpy(prediction), dim=0).argmax(0).cpu().numpy()
    save_image(image, prediction, args.out_path, image.shape[:2])
    def __getitem__(self, idx: int) -> dict:
        image_path = self.df['image'][idx]
        mask_path = self.df['mask'][idx]

        image = imread(image_path)

        if mask_path is np.nan:
            mask = self._create_empty_mask(image.shape[:2])
        else:
            mat_file = sio.loadmat(self.df['mask'][idx])
            mask = self._create_mask(mat_file)

        result = {"image": image}

        if self.masks is not None:
            result["mask"] = mask

        if self.transforms is not None:
            result = self.transforms(**result)
            result['mask'] = torch.squeeze(result['mask']).permute(2, 0, 1)

        return result
Exemple #22
0
    def __getitem__(self, idx: int) -> dict:
        """Fetch a data sample for a given index.

        Args:
            index: index of the element in the dataset

        Returns:
            Single element by index
        """
        image_path = self.images[idx]
        image = utils.imread(image_path)

        result = {"image": image}

        if self.masks is not None:
            mask = gif_imread(self.masks[idx])
            result["mask"] = mask

        if self.transforms is not None:
            result = self.transforms(result)

        result["filename"] = image_path.name

        return result
def colors_in_image(uri) -> Set:
    image = imread(uri, rootpath=args.in_dir)
    colors = np.unique(image.reshape(-1, image.shape[-1]), axis=0)
    result = {tuple(row) for row in colors.tolist()}  # np.array to hashable
    return result
Exemple #24
0
    def __getitem__(self, idx: int) -> Dict[str, Any]:
        annotation = self._annotations_dataset[idx]
        image_name = annotation['image_name']
        detections = annotation['detections']

        image = utils.imread(image_name)
        x_scale, y_scale = self.image_size / image.shape[1], self.image_size / image.shape[0]

        image = cv2.resize(image, (self.image_size, self.image_size), cv2.INTER_LINEAR)

        detections = [
            {
                'category_id': detection['category_id'],
                'category_name': detection['category_name'],
                'bbox': detection['bbox'].copy()
            } for detection in detections
        ]

        for detection in detections:
            detection['bbox'][0::2] *= x_scale
            detection['bbox'][1::2] *= y_scale

        bboxes = []
        labels = []
        for detection in detections:
            median_x = (detection['bbox'][0] + detection['bbox'][2]) // 2
            median_y = (detection['bbox'][1] + detection['bbox'][3]) // 2

            # CenterNet are VERY bad when center of detected objects not in the images
            # Let's delete this bboxes
            if not (0 <= median_x <= image.shape[1]) or not (0 <= median_y <= image.shape[0]):
                continue

            detection['bbox'][0::2] = np.clip(detection['bbox'][0::2], 0, image.shape[1])
            detection['bbox'][1::2] = np.clip(detection['bbox'][1::2], 0, image.shape[0])

            bboxes.append(detection['bbox'])
            labels.append(detection['category_id'])

        bboxes = np.array(bboxes)
        labels = np.array(labels)

        if self.transform is not None:
            result = self.transform(
                image=image,
                bboxes=bboxes,
                labels=labels,
            )
        else:
            result = dict(
                image=image,
                bboxes=bboxes,
                labels=labels,
            )

        image = result["image"].astype(np.uint8)
        bboxes = result["bboxes"]
        labels = result["labels"]

        input_height, input_width = image.shape[0], image.shape[1]

        # Normalization
        input = (image.astype(np.float32) / 255.) * 2. - 1.
        input = input.transpose(2, 0, 1)

        output_height = input_height // self._down_ratio
        output_width = input_width // self._down_ratio
        # trans_output = get_affine_transform(center, scale, 0, [output_width, output_height])

        heatmap = np.zeros((self._num_classes, output_height, output_width), dtype=np.float32)
        width_height = np.zeros((self._max_objects, 2), dtype=np.float32)

        reg = np.zeros((self._max_objects, 2), dtype=np.float32)
        ind = np.zeros(self._max_objects, dtype=np.int64)
        reg_mask = np.zeros(self._max_objects, dtype=np.uint8)

        draw_gaussian = draw_umich_gaussian

        new_bboxes = []
        num_objs = min(len(bboxes), self._max_objects)
        for i in range(num_objs):
            bbox = np.array(bboxes[i], dtype=np.float32) / self._down_ratio
            class_id = labels[i]

            bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, output_width - 1)
            bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, output_height - 1)
            h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
            new_bboxes.append(bbox)

            if h > 0 and w > 0:
                radius = gaussian_radius((math.ceil(h), math.ceil(w)))
                radius = max(0, int(radius))
                _center = np.array(
                    [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2],
                    dtype=np.float32
                )
                _center_int = _center.astype(np.int32)
                draw_gaussian(heatmap[class_id], _center_int, radius)
                width_height[i] = 1. * w, 1. * h
                ind[i] = _center_int[1] * output_width + _center_int[0]
                reg[i] = _center - _center_int
                reg_mask[i] = 1

        result = {
            "filename": image_name,
            "input": torch.from_numpy(input),
            "hm": torch.from_numpy(heatmap),
            "reg_mask": torch.from_numpy(reg_mask),
            "ind": torch.from_numpy(ind),
            "wh": torch.from_numpy(width_height),
            "reg": torch.from_numpy(reg),
            "bboxes": np.array(bboxes),
            "labels": np.array(labels),
        }

        return result
Exemple #25
0
from catalyst import utils
from catalyst.data.cv import BlurMixin, FlareMixin, RotateMixin

jpg_rgb_uri = (
    "https://raw.githubusercontent.com/catalyst-team/catalyst-pics/master"
    "/test_images/catalyst_icon.jpg")

image = utils.imread(jpg_rgb_uri)


def test_blur_mixin():
    """@TODO: Docs. Contribution is welcome."""
    global image
    image_dump = image.copy()

    mixin = BlurMixin()
    input = {"image": image_dump}  # noqa: WPS125
    output = mixin(input)

    assert mixin.input_key in output
    assert mixin.output_key in output
    assert output[mixin.input_key].shape == image_dump.shape

    assert 0 <= output[mixin.output_key] < mixin.blur_max


def test_flare_mixin():
    """@TODO: Docs. Contribution is welcome."""
    global image
    image_dump = image.copy()
Exemple #26
0
    def __call__(self, row):
        file_dir = str(row[self.input_key])
        if self.datapath is not None:
            file_dir = (file_dir if file_dir.startswith(self.datapath) else
                        os.path.join(self.datapath, file_dir))

        frames = [os.path.join(file_dir, img) for img in os.listdir(file_dir)]
        fps = int(frames[0].split("/")[-1].split("_")[1].split(".")[0])

        # Step 1: sorting
        frames = sorted(frames)

        # Step 2: sampling by time
        if self.time_window:
            frame_window = self.time_window * fps
            if self.with_offset:
                start_frame = row["offset"] * fps
            elif len(frames) > frame_window:
                start_frame = np.random.randint(0, len(frames) - frame_window)
            else:
                start_frame = 0
            # mb less than frame_window
            frames = frames[start_frame:start_frame + frame_window]
        else:
            frame_window = len(frames)

        # Step 3: choosing frames from time range
        # Option a: uniform time sampling (with constant time step)
        if self.uniform_time_sample:
            frames_indexes = [
                int(frame_window / self.num_frames * i)
                for i in range(self.num_frames)
            ]
            # If frames less than needed - duplicate last.
            # Important to keep constant time step
            frames = [frames[min(i, len(frames) - 1)] for i in frames_indexes]

        # Option b: (self.num_frames is None) use all frames (bad idea)
        elif self.num_frames is not None:
            tmp_frames = []
            if self.num_segments is not None:
                # Option c: random n sample from each successive interval
                frames = np.array_split(frames, self.num_segments)
            else:
                # Option d: random n sample (at all) from all frames
                frames = [frames]

            for frames_ in frames:
                replace_ = self.num_frames > len(frames_)
                frames_ = np.random.choice(frames_,
                                           self.num_frames,
                                           replace=replace_).tolist()
                tmp_frames.extend(frames_)

            tmp_frames = sorted(tmp_frames)  # because of random.choice
            frames = tmp_frames

        frames = [
            imread(x, rootpath=self.datapath, grayscale=self.grayscale)
            for x in frames
        ]
        result = {self.output_key: frames}
        return result