def _train_tnet_jointly(X, y, w, binary_y: bool = False, n_layers_out: int = DEFAULT_LAYERS_OUT, n_units_out: int = DEFAULT_UNITS_OUT, n_layers_r: int = DEFAULT_LAYERS_R, n_units_r: int = DEFAULT_UNITS_R, penalty_l2: float = DEFAULT_PENALTY_L2, step_size: float = DEFAULT_STEP_SIZE, n_iter: int = DEFAULT_N_ITER, batch_size: int = DEFAULT_BATCH_SIZE, val_split_prop: float = DEFAULT_VAL_SPLIT, early_stopping: bool = True, patience: int = DEFAULT_PATIENCE, n_iter_min: int = DEFAULT_N_ITER_MIN, verbose: int = 1, n_iter_print: int = DEFAULT_N_ITER_PRINT, seed: int = DEFAULT_SEED, return_val_loss: bool = False, same_init: bool = True, penalty_diff: float = DEFAULT_PENALTY_L2, nonlin: str = DEFAULT_NONLIN, avg_objective: bool = DEFAULT_AVG_OBJECTIVE): # input check y, w = check_shape_1d_data(y), check_shape_1d_data(w) d = X.shape[1] input_shape = (-1, d) rng_key = random.PRNGKey(seed) onp.random.seed(seed) # set seed for data generation via numpy as well # get validation split (can be none) X, y, w, X_val, y_val, w_val, val_string = make_val_split( X, y, w, val_split_prop=val_split_prop, seed=seed) n = X.shape[0] # could be different from before due to split # get output head functions (both heads share same structure) init_fun_head, predict_fun_head = OutputHead(n_layers_out=n_layers_out, n_units_out=n_units_out, binary_y=binary_y, n_layers_r=n_layers_r, n_units_r=n_units_r, nonlin=nonlin) # Define loss functions # loss functions for the head if not binary_y: def loss_head(params, batch): # mse loss function inputs, targets, weights = batch preds = predict_fun_head(params, inputs) return jnp.sum(weights * ((preds - targets)**2)) else: def loss_head(params, batch): # mse loss function inputs, targets, weights = batch preds = predict_fun_head(params, inputs) return -jnp.sum(weights * (targets * jnp.log(preds) + (1 - targets) * jnp.log(1 - preds))) @jit def loss_tnet(params, batch, penalty_l2, penalty_diff): # params: list[representation, head_0, head_1] # batch: (X, y, w) X, y, w = batch # pass down to two heads loss_0 = loss_head(params[0], (X, y, 1 - w)) loss_1 = loss_head(params[1], (X, y, w)) # regularization weightsq_head = heads_l2_penalty(params[0], params[1], n_layers_r + n_layers_out, True, penalty_l2, penalty_diff) if not avg_objective: return loss_0 + loss_1 + 0.5 * (weightsq_head) else: n_batch = y.shape[0] return (loss_0 + loss_1) / n_batch + 0.5 * (weightsq_head) # Define optimisation routine opt_init, opt_update, get_params = optimizers.adam(step_size=step_size) @jit def update(i, state, batch, penalty_l2, penalty_diff): # updating function params = get_params(state) return opt_update( i, grad(loss_tnet)(params, batch, penalty_l2, penalty_diff), state) # initialise states if same_init: _, init_head = init_fun_head(rng_key, input_shape) init_params = [init_head, init_head] else: rng_key, rng_key_2 = random.split(rng_key) _, init_head_0 = init_fun_head(rng_key, input_shape) _, init_head_1 = init_fun_head(rng_key_2, input_shape) init_params = [init_head_0, init_head_1] opt_state = opt_init(init_params) # calculate number of batches per epoch batch_size = batch_size if batch_size < n else n n_batches = int(onp.round(n / batch_size)) if batch_size < n else 1 train_indices = onp.arange(n) l_best = LARGE_VAL p_curr = 0 # do training for i in range(n_iter): # shuffle data for minibatches onp.random.shuffle(train_indices) for b in range(n_batches): idx_next = train_indices[(b * batch_size):min((b + 1) * batch_size, n - 1)] next_batch = X[idx_next, :], y[idx_next, :], w[idx_next] opt_state = update(i * n_batches + b, opt_state, next_batch, penalty_l2, penalty_diff) if (verbose > 0 and i % n_iter_print == 0) or early_stopping: params_curr = get_params(opt_state) l_curr = loss_tnet(params_curr, (X_val, y_val, w_val), penalty_l2, penalty_diff) if verbose > 0 and i % n_iter_print == 0: print("Epoch: {}, current {} loss {}".format( i, val_string, l_curr)) if early_stopping and ((i + 1) * n_batches > n_iter_min): if l_curr < l_best: l_best = l_curr p_curr = 0 params_best = params_curr else: if onp.isnan(l_curr): # if diverged, return best return params_best, predict_fun_head p_curr = p_curr + 1 if p_curr > patience: if return_val_loss: # return loss without penalty l_final = loss_tnet(params_curr, (X_val, y_val, w_val), 0, 0) return params_curr, predict_fun_head, l_final return params_curr, predict_fun_head # return the parameters trained_params = get_params(opt_state) if return_val_loss: # return loss without penalty l_final = loss_tnet(get_params(opt_state), (X_val, y_val, w_val), 0, 0) return trained_params, predict_fun_head, l_final return trained_params, predict_fun_head
def train_snet2(X, y, w, binary_y: bool = False, n_layers_r: int = DEFAULT_LAYERS_R, n_units_r: int = DEFAULT_UNITS_R, n_layers_out: int = DEFAULT_LAYERS_OUT, n_units_out: int = DEFAULT_UNITS_OUT, penalty_l2: float = DEFAULT_PENALTY_L2, step_size: float = DEFAULT_STEP_SIZE, n_iter: int = DEFAULT_N_ITER, batch_size: int = DEFAULT_BATCH_SIZE, val_split_prop: float = DEFAULT_VAL_SPLIT, early_stopping: bool = True, patience: int = DEFAULT_PATIENCE, n_iter_min: int = DEFAULT_N_ITER_MIN, verbose: int = 1, n_iter_print: int = DEFAULT_N_ITER_PRINT, seed: int = DEFAULT_SEED, return_val_loss: bool = False, reg_diff: bool = False, penalty_diff: float = DEFAULT_PENALTY_L2, nonlin: str = DEFAULT_NONLIN, avg_objective: bool = DEFAULT_AVG_OBJECTIVE, same_init: bool = False): """ SNet2 corresponds to DragonNet (Shi et al, 2019) [without TMLE regularisation term]. """ y, w = check_shape_1d_data(y), check_shape_1d_data(w) d = X.shape[1] input_shape = (-1, d) rng_key = random.PRNGKey(seed) onp.random.seed(seed) # set seed for data generation via numpy as well if not reg_diff: penalty_diff = penalty_l2 # get validation split (can be none) X, y, w, X_val, y_val, w_val, val_string = make_val_split( X, y, w, val_split_prop=val_split_prop, seed=seed) n = X.shape[0] # could be different from before due to split # get representation layer init_fun_repr, predict_fun_repr = ReprBlock(n_layers=n_layers_r, n_units=n_units_r, nonlin=nonlin) # get output head functions (output heads share same structure) init_fun_head_po, predict_fun_head_po = OutputHead( n_layers_out=n_layers_out, n_units_out=n_units_out, binary_y=binary_y, nonlin=nonlin) # add propensity head init_fun_head_prop, predict_fun_head_prop = OutputHead( n_layers_out=n_layers_out, n_units_out=n_units_out, binary_y=True, nonlin=nonlin) def init_fun_snet2(rng, input_shape): # chain together the layers # param should look like [repr, po_0, po_1, prop] rng, layer_rng = random.split(rng) input_shape_repr, param_repr = init_fun_repr(layer_rng, input_shape) rng, layer_rng = random.split(rng) if same_init: # initialise both on same values input_shape, param_0 = init_fun_head_po(layer_rng, input_shape_repr) input_shape, param_1 = init_fun_head_po(layer_rng, input_shape_repr) else: input_shape, param_0 = init_fun_head_po(layer_rng, input_shape_repr) rng, layer_rng = random.split(rng) input_shape, param_1 = init_fun_head_po(layer_rng, input_shape_repr) rng, layer_rng = random.split(rng) input_shape, param_prop = init_fun_head_prop(layer_rng, input_shape_repr) return input_shape, [param_repr, param_0, param_1, param_prop] # Define loss functions # loss functions for the head if not binary_y: def loss_head(params, batch): # mse loss function inputs, targets, weights = batch preds = predict_fun_head_po(params, inputs) return jnp.sum(weights * ((preds - targets)**2)) else: def loss_head(params, batch): # log loss function inputs, targets, weights = batch preds = predict_fun_head_po(params, inputs) return -jnp.sum(weights * (targets * jnp.log(preds) + (1 - targets) * jnp.log(1 - preds))) def loss_head_prop(params, batch, penalty): # log loss function for propensities inputs, targets = batch preds = predict_fun_head_prop(params, inputs) return -jnp.sum(targets * jnp.log(preds) + (1 - targets) * jnp.log(1 - preds)) # complete loss function for all parts @jit def loss_snet2(params, batch, penalty_l2, penalty_diff): # params: list[representation, head_0, head_1, head_prop] # batch: (X, y, w) X, y, w = batch # get representation reps = predict_fun_repr(params[0], X) # pass down to heads loss_0 = loss_head(params[1], (reps, y, 1 - w)) loss_1 = loss_head(params[2], (reps, y, w)) # pass down to propensity head loss_prop = loss_head_prop(params[3], (reps, w), penalty_l2) weightsq_prop = sum([ jnp.sum(params[3][i][0]**2) for i in range(0, 2 * n_layers_out + 1, 2) ]) weightsq_body = sum( [jnp.sum(params[0][i][0]**2) for i in range(0, 2 * n_layers_r, 2)]) weightsq_head = heads_l2_penalty(params[1], params[2], n_layers_out, reg_diff, penalty_l2, penalty_diff) if not avg_objective: return loss_0 + loss_1 + loss_prop + 0.5 * ( penalty_l2 * (weightsq_body + weightsq_prop) + weightsq_head) else: n_batch = y.shape[0] return (loss_0 + loss_1) / n_batch + loss_prop / n_batch + \ 0.5 * (penalty_l2 * (weightsq_body + weightsq_prop) + weightsq_head) # Define optimisation routine opt_init, opt_update, get_params = optimizers.adam(step_size=step_size) @jit def update(i, state, batch, penalty_l2, penalty_diff): # updating function params = get_params(state) return opt_update( i, grad(loss_snet2)(params, batch, penalty_l2, penalty_diff), state) # initialise states _, init_params = init_fun_snet2(rng_key, input_shape) opt_state = opt_init(init_params) # calculate number of batches per epoch batch_size = batch_size if batch_size < n else n n_batches = int(onp.round(n / batch_size)) if batch_size < n else 1 train_indices = onp.arange(n) l_best = LARGE_VAL p_curr = 0 # do training for i in range(n_iter): # shuffle data for minibatches onp.random.shuffle(train_indices) for b in range(n_batches): idx_next = train_indices[(b * batch_size):min((b + 1) * batch_size, n - 1)] next_batch = X[idx_next, :], y[idx_next, :], w[idx_next] opt_state = update(i * n_batches + b, opt_state, next_batch, penalty_l2, penalty_diff) if (verbose > 0 and i % n_iter_print == 0) or early_stopping: params_curr = get_params(opt_state) l_curr = loss_snet2(params_curr, (X_val, y_val, w_val), penalty_l2, penalty_diff) if verbose > 0 and i % n_iter_print == 0: print("Epoch: {}, current {} loss {}".format( i, val_string, l_curr)) if early_stopping and ((i + 1) * n_batches > n_iter_min): # check if loss updated if l_curr < l_best: l_best = l_curr p_curr = 0 params_best = params_curr else: if onp.isnan(l_curr): # if diverged, return best return params_best, (predict_fun_repr, predict_fun_head_po, predict_fun_head_prop) p_curr = p_curr + 1 if p_curr > patience: if return_val_loss: # return loss without penalty l_final = loss_snet2(params_curr, (X_val, y_val, w_val), 0, 0) return params_curr, (predict_fun_repr, predict_fun_head_po, predict_fun_head_prop), l_final return params_curr, (predict_fun_repr, predict_fun_head_po, predict_fun_head_prop) # return the parameters trained_params = get_params(opt_state) if return_val_loss: # return loss without penalty l_final = loss_snet2(get_params(opt_state), (X_val, y_val, w_val), 0, 0) return trained_params, (predict_fun_repr, predict_fun_head_po, predict_fun_head_prop), \ l_final return trained_params, (predict_fun_repr, predict_fun_head_po, predict_fun_head_prop)
def train_r_stage2(X, y_ortho, w_ortho, n_layers_out: int = DEFAULT_LAYERS_OUT, n_units_out: int = DEFAULT_UNITS_OUT, n_layers_r: int = 0, n_units_r: int = DEFAULT_UNITS_R, penalty_l2: float = DEFAULT_PENALTY_L2, step_size: float = DEFAULT_STEP_SIZE, n_iter: int = DEFAULT_N_ITER, batch_size: int = DEFAULT_BATCH_SIZE, val_split_prop: float = DEFAULT_VAL_SPLIT, early_stopping: bool = True, patience: int = DEFAULT_PATIENCE, n_iter_min: int = DEFAULT_N_ITER_MIN, verbose: int = 1, n_iter_print: int = DEFAULT_N_ITER_PRINT, seed: int = DEFAULT_SEED, return_val_loss: bool = False, nonlin: str = DEFAULT_NONLIN, avg_objective: bool = DEFAULT_AVG_OBJECTIVE): # function to train a single output head # input check y_ortho, w_ortho = check_shape_1d_data(y_ortho), check_shape_1d_data( w_ortho) d = X.shape[1] input_shape = (-1, d) rng_key = random.PRNGKey(seed) onp.random.seed(seed) # set seed for data generation via numpy as well # get validation split (can be none) X, y_ortho, w_ortho, X_val, y_val, w_val, val_string = make_val_split( X, y_ortho, w_ortho, val_split_prop=val_split_prop, seed=seed, stratify_w=False) n = X.shape[0] # could be different from before due to split # get output head init_fun, predict_fun = OutputHead(n_layers_out=n_layers_out, n_units_out=n_units_out, n_layers_r=n_layers_r, n_units_r=n_units_r, nonlin=nonlin) # define loss and grad @jit def loss(params, batch, penalty): # mse loss function inputs, ortho_targets, ortho_treats = batch preds = predict_fun(params, inputs) weightsq = sum([ jnp.sum(params[i][0]**2) for i in range(0, 2 * (n_layers_out + n_layers_r) + 1, 2) ]) if not avg_objective: return jnp.sum((ortho_targets - ortho_treats * preds) ** 2) + \ 0.5 * penalty * weightsq else: return jnp.average((ortho_targets - ortho_treats * preds) ** 2) + \ 0.5 * penalty * weightsq # set optimization routine # set optimizer opt_init, opt_update, get_params = optimizers.adam(step_size=step_size) # set update function @jit def update(i, state, batch, penalty): params = get_params(state) g_params = grad(loss)(params, batch, penalty) # g_params = optimizers.clip_grads(g_params, 1.0) return opt_update(i, g_params, state) # initialise states _, init_params = init_fun(rng_key, input_shape) opt_state = opt_init(init_params) # calculate number of batches per epoch batch_size = batch_size if batch_size < n else n n_batches = int(onp.round(n / batch_size)) if batch_size < n else 1 train_indices = onp.arange(n) l_best = LARGE_VAL p_curr = 0 # do training for i in range(n_iter): # shuffle data for minibatches onp.random.shuffle(train_indices) for b in range(n_batches): idx_next = train_indices[(b * batch_size):min((b + 1) * batch_size, n - 1)] next_batch = X[idx_next, :], y_ortho[idx_next, :], w_ortho[ idx_next, :] opt_state = update(i * n_batches + b, opt_state, next_batch, penalty_l2) if (verbose > 0 and i % n_iter_print == 0) or early_stopping: params_curr = get_params(opt_state) l_curr = loss(params_curr, (X_val, y_val, w_val), penalty_l2) if verbose > 0 and i % n_iter_print == 0: print("Epoch: {}, current {} loss: {}".format( i, val_string, l_curr)) if early_stopping and ((i + 1) * n_batches > n_iter_min): # check if loss updated if l_curr < l_best: l_best = l_curr p_curr = 0 else: p_curr = p_curr + 1 if p_curr > patience: trained_params = get_params(opt_state) if return_val_loss: # return loss without penalty l_final = loss(trained_params, (X_val, y_val, w_val), 0) return trained_params, predict_fun, l_final return trained_params, predict_fun # get final parameters trained_params = get_params(opt_state) if return_val_loss: # return loss without penalty l_final = loss(trained_params, (X_val, y_val, w_val), 0) return trained_params, predict_fun, l_final return trained_params, predict_fun
def train_snet3(X, y, w, binary_y: bool = False, n_layers_r: int = DEFAULT_LAYERS_R, n_units_r: int = DEFAULT_UNITS_R_BIG_S3, n_units_r_small: int = DEFAULT_UNITS_R_SMALL_S3, n_layers_out: int = DEFAULT_LAYERS_OUT, n_units_out: int = DEFAULT_UNITS_OUT, penalty_l2: float = DEFAULT_PENALTY_L2, penalty_disc: float = DEFAULT_PENALTY_DISC, penalty_orthogonal: float = DEFAULT_PENALTY_ORTHOGONAL, step_size: float = DEFAULT_STEP_SIZE, n_iter: int = DEFAULT_N_ITER, batch_size: int = DEFAULT_BATCH_SIZE, val_split_prop: float = DEFAULT_VAL_SPLIT, early_stopping: bool = True, n_iter_min: int = DEFAULT_N_ITER_MIN, patience: int = DEFAULT_PATIENCE, verbose: int = 1, n_iter_print: int = DEFAULT_N_ITER_PRINT, seed: int = DEFAULT_SEED, return_val_loss: bool = False, reg_diff: bool = False, penalty_diff: float = DEFAULT_PENALTY_L2, nonlin: str = DEFAULT_NONLIN, avg_objective: bool = DEFAULT_AVG_OBJECTIVE, same_init: bool = False): """ SNet-3, based on the decompostion used in Hassanpour and Greiner (2020) """ # function to train a net with 3 representations y, w = check_shape_1d_data(y), check_shape_1d_data(w) d = X.shape[1] input_shape = (-1, d) rng_key = random.PRNGKey(seed) onp.random.seed(seed) # set seed for data generation via numpy as well if not reg_diff: penalty_diff = penalty_l2 # get validation split (can be none) X, y, w, X_val, y_val, w_val, val_string = make_val_split(X, y, w, val_split_prop=val_split_prop, seed=seed) n = X.shape[0] # could be different from before due to split # get representation layers init_fun_repr, predict_fun_repr = ReprBlock(n_layers=n_layers_r, n_units=n_units_r, nonlin=nonlin) init_fun_repr_small, predict_fun_repr_small = ReprBlock(n_layers=n_layers_r, n_units=n_units_r_small, nonlin=nonlin) # get output head functions (output heads share same structure) init_fun_head_po, predict_fun_head_po = OutputHead(n_layers_out=n_layers_out, n_units_out=n_units_out, binary_y=binary_y, nonlin=nonlin) # add propensity head init_fun_head_prop, predict_fun_head_prop = OutputHead(n_layers_out=n_layers_out, n_units_out=n_units_out, binary_y=True, nonlin=nonlin) def init_fun_snet3(rng, input_shape): # chain together the layers # param should look like [repr_c, repr_o, repr_t, po_0, po_1, prop] # initialise representation layers rng, layer_rng = random.split(rng) input_shape_repr, param_repr_c = init_fun_repr(layer_rng, input_shape) rng, layer_rng = random.split(rng) input_shape_repr_small, param_repr_o = init_fun_repr_small(layer_rng, input_shape) rng, layer_rng = random.split(rng) _, param_repr_w = init_fun_repr_small(layer_rng, input_shape) # each head gets two representations input_shape_repr = input_shape_repr[:-1] + (input_shape_repr[-1] + input_shape_repr_small[ -1],) # initialise output heads rng, layer_rng = random.split(rng) if same_init: # initialise both on same values input_shape, param_0 = init_fun_head_po(layer_rng, input_shape_repr) input_shape, param_1 = init_fun_head_po(layer_rng, input_shape_repr) else: input_shape, param_0 = init_fun_head_po(layer_rng, input_shape_repr) rng, layer_rng = random.split(rng) input_shape, param_1 = init_fun_head_po(layer_rng, input_shape_repr) rng, layer_rng = random.split(rng) input_shape, param_prop = init_fun_head_prop(layer_rng, input_shape_repr) return input_shape, [param_repr_c, param_repr_o, param_repr_w, param_0, param_1, param_prop] # Define loss functions # loss functions for the head if not binary_y: def loss_head(params, batch, penalty): # mse loss function inputs, targets, weights = batch preds = predict_fun_head_po(params, inputs) return jnp.sum(weights * ((preds - targets) ** 2)) else: def loss_head(params, batch, penalty): # log loss function inputs, targets, weights = batch preds = predict_fun_head_po(params, inputs) return - jnp.sum(weights * (targets * jnp.log(preds) + (1 - targets) * jnp.log( 1 - preds))) def loss_head_prop(params, batch, penalty): # log loss function for propensities inputs, targets = batch preds = predict_fun_head_prop(params, inputs) return - jnp.sum(targets * jnp.log(preds) + (1 - targets) * jnp.log( 1 - preds)) # complete loss function for all parts @jit def loss_snet3(params, batch, penalty_l2, penalty_orthogonal, penalty_disc): # params: list[repr_c, repr_o, repr_t, po_0, po_1, prop] # batch: (X, y, w) X, y, w = batch # get representation reps_c = predict_fun_repr(params[0], X) reps_o = predict_fun_repr_small(params[1], X) reps_w = predict_fun_repr_small(params[2], X) # concatenate reps_po = _concatenate_representations((reps_c, reps_o)) reps_prop = _concatenate_representations((reps_c, reps_w)) # pass down to heads loss_0 = loss_head(params[3], (reps_po, y, 1 - w), penalty_l2) loss_1 = loss_head(params[4], (reps_po, y, w), penalty_l2) # pass down to propensity head loss_prop = loss_head_prop(params[5], (reps_prop, w), penalty_l2) weightsq_prop = sum([jnp.sum(params[5][i][0] ** 2) for i in range(0, 2 * n_layers_out + 1, 2)]) # which variable has impact on which representation col_c = _get_absolute_rowsums(params[0][0][0]) col_o = _get_absolute_rowsums(params[1][0][0]) col_w = _get_absolute_rowsums(params[2][0][0]) loss_o = penalty_orthogonal * ( jnp.sum(col_c * col_o + col_c * col_w + col_w * col_o)) # is rep_o balanced between groups? loss_disc = penalty_disc * mmd2_lin(reps_o, w) # weight decay on representations weightsq_body = sum([sum([jnp.sum(params[j][i][0] ** 2) for i in range(0, 2 * n_layers_r, 2)]) for j in range(3)]) weightsq_head = heads_l2_penalty(params[3], params[4], n_layers_out, reg_diff, penalty_l2, penalty_diff) if not avg_objective: return loss_0 + loss_1 + loss_prop + loss_o + loss_disc + \ 0.5 * (penalty_l2 * (weightsq_body + weightsq_prop) + weightsq_head) else: n_batch = y.shape[0] return (loss_0 + loss_1)/n_batch + loss_prop/n_batch + loss_o + loss_disc + \ 0.5 * (penalty_l2 * (weightsq_body + weightsq_prop) + weightsq_head) # Define optimisation routine opt_init, opt_update, get_params = optimizers.adam(step_size=step_size) @jit def update(i, state, batch, penalty_l2, penalty_orthogonal, penalty_disc): # updating function params = get_params(state) return opt_update(i, grad(loss_snet3)( params, batch, penalty_l2, penalty_orthogonal, penalty_disc), state) # initialise states _, init_params = init_fun_snet3(rng_key, input_shape) opt_state = opt_init(init_params) # calculate number of batches per epoch batch_size = batch_size if batch_size < n else n n_batches = int(onp.round(n / batch_size)) if batch_size < n else 1 train_indices = onp.arange(n) l_best = LARGE_VAL p_curr = 0 # do training for i in range(n_iter): # shuffle data for minibatches onp.random.shuffle(train_indices) for b in range(n_batches): idx_next = train_indices[(b * batch_size):min((b + 1) * batch_size, n - 1)] next_batch = X[idx_next, :], y[idx_next, :], w[idx_next] opt_state = update(i * n_batches + b, opt_state, next_batch, penalty_l2, penalty_orthogonal, penalty_disc) if (verbose > 0 and i % n_iter_print == 0) or early_stopping: params_curr = get_params(opt_state) l_curr = loss_snet3(params_curr, (X_val, y_val, w_val), penalty_l2, penalty_orthogonal, penalty_disc) if verbose > 0 and i % n_iter_print == 0: print("Epoch: {}, current {} loss {}".format(i, val_string, l_curr)) if early_stopping and ((i + 1) * n_batches > n_iter_min): # check if loss updated if l_curr < l_best: l_best = l_curr p_curr = 0 params_best = params_curr else: if onp.isnan(l_curr): # if diverged, return best return params_best, (predict_fun_repr, predict_fun_head_po, predict_fun_head_prop) p_curr = p_curr + 1 if p_curr > patience: if return_val_loss: # return loss without penalty l_final = loss_snet3(params_curr, (X_val, y_val, w_val), 0, 0, 0) return params_curr, (predict_fun_repr, predict_fun_head_po, predict_fun_head_prop), l_final return params_curr, (predict_fun_repr, predict_fun_head_po, predict_fun_head_prop) # return the parameters trained_params = get_params(opt_state) if return_val_loss: # return loss without penalty l_final = loss_snet3(get_params(opt_state), (X_val, y_val, w_val), 0, 0) return trained_params, (predict_fun_repr, predict_fun_head_po, predict_fun_head_prop), \ l_final return trained_params, (predict_fun_repr, predict_fun_head_po, predict_fun_head_prop)