Exemple #1
0
    def fit(self, X, y, w, p=None):
        """
        Fit method for a CATENet. Takes covariates, outcome variable and treatment indicator as 
        input
        
        Parameters
        ----------
        X: pd.DataFrame or np.array
            Covariate matrix
        y: np.array
            Outcome vector
        w: np.array
            Treatment indicator
        p: np.array
            Vector of (known) treatment propensities. Currently only supported for TwoStepNets.
        """
        # some quick input checks
        if p is not None:
            raise NotImplementedError('Only two-step-nets take p as input. ')
        X = check_X_is_np(X)
        self._check_inputs(w, p)

        train_func = self._get_train_function()
        train_params = self.get_params()

        self._params, self._predict_funs = train_func(X, y, w, **train_params)
Exemple #2
0
    def predict(self, X, return_po: bool = False, return_prop: bool = False):
        """
        Predict treatment effect estimates using a CATENet. Depending on method, can also return
        potential outcome estimate and propensity score estimate.

        Parameters
        ----------
        X: pd.DataFrame or np.array
            Covariate matrix
        return_po: bool, default False
            Whether to return potential outcome estimate
        return_prop: bool, default False
            Whether to return propensity estimate

        Returns
        -------
        array of CATE estimates, optionally also potential outcomes and propensity
        """
        X = check_X_is_np(X)
        predict_func = self._get_predict_function()
        return predict_func(X,
                            trained_params=self._params,
                            predict_funs=self._predict_funs,
                            return_po=return_po,
                            return_prop=return_prop)
Exemple #3
0
    def fit_and_select_params(self, X, y, w, p=None, param_grid: dict = None):
        # some quick input checks
        if param_grid is None:
            raise ValueError("No param_grid to evaluate. ")
        X = check_X_is_np(X)
        self._check_inputs(w, p)

        param_grid = ParameterGrid(param_grid)
        self_param_dict = self.get_params()
        train_function = self._get_train_function()

        models = []
        losses = []
        param_settings = []

        for param_setting in param_grid:
            if self.verbose > 0:
                print('Testing parameter setting: ' + ' '.join([
                    key + ': ' + str(value)
                    for key, value in param_setting.items()
                ]))
            # replace params
            train_param_dict = {
                key: (val if not key in param_setting.keys() else
                      param_setting[key])
                for key, val in self_param_dict.items()
            }
            if p is not None:
                params, funs, val_loss = train_function(X,
                                                        y,
                                                        w,
                                                        p=p,
                                                        return_val_loss=True,
                                                        **train_param_dict)
            else:
                params, funs, val_loss = train_function(X,
                                                        y,
                                                        w,
                                                        return_val_loss=True,
                                                        **train_param_dict)

            models.append((params, funs))
            losses.append(val_loss)

        # save results
        param_settings.extend(param_grid)
        self._selection_results = {
            'param_settings': param_settings,
            'val_losses': losses
        }

        # find lowest loss and set params
        best_idx = jnp.array(losses).argmin()
        self._params, self._predict_funs = models[best_idx]
        self.set_params(**param_settings[best_idx])
Exemple #4
0
    def fit(self, X, y, w, p=None):
        # overwrite super so we can pass p as extra param
        # some quick input checks
        X = check_X_is_np(X)
        self._check_inputs(w, p)

        train_func = self._get_train_function()
        train_params = self.get_params()

        self._params, self._predict_funs = train_func(X, y, w, p,
                                                      **train_params)
Exemple #5
0
    def fit(self, X, y, w, p=None):
        # overwrite super so we can pass p as extra param
        # some quick input checks
        X = check_X_is_np(X)
        self._check_inputs(w, p)

        train_func = self._get_train_function()
        train_params = self.get_params()
        if self.rescale_transformation:
            self._params, self._predict_funs, self._scale_factor = train_func(X, y, w, p,
                                                                              **train_params)
        else:
            self._params, self._predict_funs = train_func(X, y, w, p, **train_params)