Exemple #1
0
    def _run_single_set(self, param):
        """Run TCAV with provided for one set of (target, concepts).
        Args:
          param: parameters to run
        Returns:
          a dictionary of results (panda frame)
        """
        bottleneck = param.bottleneck
        concepts = param.concepts
        target_class = param.target_class
        activation_generator = param.activation_generator
        alpha = param.alpha
        mymodel = param.model
        cav_dir = param.cav_dir
        
        # Get acts
        acts = activation_generator.process_and_load_activations(
            [bottleneck], concepts + [target_class])
        # Get CAVs
        cav_hparams = CAV.default_hparams()
        cav_hparams.alpha = alpha
        cav_instance = get_or_train_cav(
            concepts, bottleneck, acts, cav_dir=cav_dir,
            cav_hparams=cav_hparams)

        # clean up
        for c in concepts:
            del acts[c]

        # Hypo testing
        a_cav_key = CAV.cav_key(concepts, bottleneck, cav_hparams.model_type,
                                cav_hparams.alpha)
        target_class_for_compute_tcav_score = target_class

        for cav_concept in concepts:
            if cav_concept is self.random_counterpart or 'random' not in cav_concept:
                i_up = self.compute_tcav_score(
                    mymodel, target_class_for_compute_tcav_score, cav_concept,
                    cav_instance, acts[target_class][cav_instance.bottleneck])
                val_directional_dirs = self.get_directional_dir(
                    mymodel, target_class_for_compute_tcav_score, cav_concept,
                    cav_instance, acts[target_class][cav_instance.bottleneck])
                result = {'cav_key' : a_cav_key, 'cav_concept' : cav_concept,
                          'target_class' : target_class, 'i_up' : i_up,
                          'val_directional_dirs_abs_mean' :
                          np.mean(np.abs(val_directional_dirs)), 
                          'val_directional_dirs_mean' :
                          np.mean(val_directional_dirs),
                          'val_directional_dirs_std' :
                          np.std(val_directional_dirs),
                          'note' : 'alpha_%s ' % (alpha),
                          'alpha' : alpha,
                          'bottleneck' : bottleneck}
        del acts
        return result
Exemple #2
0
 def test_default_hparams(self):
     hparam = CAV.default_hparams()
     self.assertEqual(hparam.alpha, 0.01)
     self.assertEqual(hparam.model_type, 'linear')
Exemple #3
0
    def _run_single_set(self, params):
        """
		Run TCAV with provided for one set of (target, concepts).

		:param params: parameters to run
		:return: a dict of results (pandas dataframe)
		"""
        bottleneck = params.bottleneck
        concepts = params.concepts
        target_class = params.target_class
        activation_generator = params.activation_generator
        alpha = params.alpha
        black_box = params.black_box
        cav_dir = params.cav_dir

        tf.logging.info('running %s %s' % (target_class, concepts))

        acts = activation_generator(black_box, bottlenecks,
                                    concepts + [target_class])
        cav_hparams = CAV.default_hparams()
        cav_hparams.alpha = alpha
        cav_instance = get_or_train_cav(concepts,
                                        bottlenecks,
                                        acts,
                                        cav_dir=cav_dir,
                                        cav_hparams=cav_hparams)

        for concept in concepts:
            del acts[concept]

        a_cav_key = CAV.cav_key(concepts, bottlenecks, cav_hparams.model_type,
                                cav_hparams.alpha)
        target_class_for_compute_tcav_score = target_class

        for cav_concept in concepts:
            if cav_concept is self.random_counterpart or 'random' not in cav_concept:
                i_up = self.compute_tcav_score(
                    black_box, target_class_for_compute_tcav_score,
                    cav_concept.cav_instance,
                    acts[target_class][cav_instance.bottleneck])
                val_dir_derivatives = self.get_dir_derivative(
                    black_box, target_class_for_compute_tcav_score,
                    cav_concept.cav_instance,
                    acts[target_class][cav_instance.bottleneck])
                result = {
                    'cav_key':
                    a_cav_key,
                    'cav_concept':
                    cav_concept,
                    'target_class':
                    target_class,
                    'i_up':
                    i_up,
                    'val_dir_derivatives_abs_mean':
                    np.mean(np.abs(val_dir_derivatives)),
                    'val_dir_derivatives_mean':
                    np.mean(val_dir_derivatives),
                    'val_dir_derivatives_std':
                    np.std(val_dir_derivatives),
                    'note':
                    'alpha_%s' % (alpha),
                    'alpha':
                    alpha,
                    'bottleneck':
                    bottlenecks
                }
        del acts
        return result