Exemple #1
0
def maxCoverRule_wrong(cars_list, data_case):
    for i in range(len(cars_list)):
        if cars_list[i].class_label != data_case[-1]:
            temp_data_case = data_case[:-1]
            temp_data_case.append(cars_list[i].class_label)
            if cba_cb_m1.is_satisfy(temp_data_case, cars_list[i]):
                return i
    return None
Exemple #2
0
def allCoverRules(u, data_case, c_rule, cars_list):
    w_set = set()
    for rule_index in u:
        # have higher precedences than cRule
        if compare(cars_list[rule_index], c_rule) > 0:
            # wrongly classify the data case
            if cba_cb_m1.is_satisfy(data_case, cars_list[rule_index]) == False:
                w_set.add(rule_index)
    return w_set
Exemple #3
0
def maxCoverRule_correct(cars_list, data_case):
    for i in range(len(cars_list)):
        if cars_list[i].class_label == data_case[-1]:
            if cba_cb_m1.is_satisfy(data_case, cars_list[i]):
                return i
    return None
Exemple #4
0
def classifier_builder_m2(cars, dataset):
    classifier = Classifier_m2()

    cars_list = cba_cb_m1.sort(cars)
    for i in range(len(cars_list)):
        cars_list[i] = ruleitem2rule(cars_list[i], dataset)

    # stage 1
    q = set()
    u = set()
    a = set()
    mark_set = set()
    for i in range(len(dataset)):
        c_rule_index = maxCoverRule_correct(cars_list, dataset[i])
        w_rule_index = maxCoverRule_wrong(cars_list, dataset[i])
        if c_rule_index is not None:
            u.add(c_rule_index)
        if c_rule_index:
            cars_list[c_rule_index].classCasesCovered[dataset[i][-1]] += 1
        if c_rule_index and w_rule_index:
            if compare(cars_list[c_rule_index], cars_list[w_rule_index]) > 0:
                q.add(c_rule_index)
                mark_set.add(c_rule_index)
            else:
                a.add((i, dataset[i][-1], c_rule_index, w_rule_index))
        elif c_rule_index is None and w_rule_index is not None:
            a.add((i, dataset[i][-1], c_rule_index, w_rule_index))

    # stage 2
    for entry in a:
        if cars_list[entry[3]] in mark_set:
            if entry[2] is not None:
                cars_list[entry[2]].classCasesCovered[entry[1]] -= 1
            cars_list[entry[3]].classCasesCovered[entry[1]] += 1
        else:
            if entry[2] is not None:
                w_set = allCoverRules(u, dataset[entry[0]],
                                      cars_list[entry[2]], cars_list)
            else:
                w_set = allCoverRules(u, dataset[entry[0]], None, cars_list)
            for w in w_set:
                cars_list[w].replace.add((entry[2], entry[0], entry[1]))
                cars_list[w].classCasesCovered[entry[1]] += 1
            q |= w_set

    # stage 3
    rule_errors = 0
    q = sort_with_index(q, cars_list)
    data_cases_covered = list([False] * len(dataset))
    for r_index in q:
        if cars_list[r_index].classCasesCovered[
                cars_list[r_index].class_label] != 0:
            for entry in cars_list[r_index].replace:
                if data_cases_covered[entry[1]]:
                    cars_list[r_index].classCasesCovered[entry[2]] -= 1
                else:
                    if entry[0] is not None:
                        cars_list[entry[0]].classCasesCovered[entry[2]] -= 1
            for i in range(len(dataset)):
                datacase = dataset[i]
                if datacase:
                    is_satisfy_value = cba_cb_m1.is_satisfy(
                        datacase, cars_list[r_index])
                    if is_satisfy_value:
                        dataset[i] = []
                        data_cases_covered[i] = True
            rule_errors += errorsOfRule(cars_list[r_index], dataset)
            class_distribution = compClassDistr(dataset)
            default_class = selectDefault(class_distribution)
            default_errors = defErr(default_class, class_distribution)
            total_errors = rule_errors + default_errors
            classifier.add(cars_list[r_index], default_class, total_errors)
    classifier.discard()

    return classifier