def test_evaluate(): amplitude = 1.2 frequency = 42. t = 3. sinusodial = Sinusodial(amplitude, frequency) assert sinusodial.evaluate(t) == (amplitude * math.sin(2 * math.pi * frequency * t))
def test_evaluate_with_offset_and_phase(): amplitude = 1.2 frequency = 42. phase = 7.5 * math.pi offset = 4.5321 t = 3. sinusodial = Sinusodial(amplitude, frequency, phase, offset) assert sinusodial.evaluate(t) == ( amplitude * math.sin(2 * math.pi * frequency * t + phase) + offset)
def test_properties(): amplitude = 1.2 frequency = 42. phase = 7.5 * math.pi offset = 4.5321 sinusodial = Sinusodial(amplitude, frequency, phase, offset) assert sinusodial.amplitude == amplitude assert sinusodial.frequency == frequency assert sinusodial.phase == phase assert sinusodial.offset == offset
def main(): # Analog system analog_system = ChainOfIntegrators(betaVec, rhoVec, kappaVec) # Initialize the digital control. digital_control = DigitalControl(T, M) # Instantiate the analog signal analog_signal = Sinusodial(amplitude, frequency, phase, offset) # Instantiate the simulator. simulator = StateSpaceSimulator(analog_system, digital_control, [analog_signal], t_stop=end_time) # Depending on your analog system the step above might take some time to # compute as it involves precomputing solutions to initial value problems. # Construct byte stream. byte_stream = control_signal_2_byte_stream(simulator, M) write_byte_stream_to_file("./temp.adc", byte_stream) os.remove("./temp.adc")
# ------------- # # We will also need an analog signal for conversion. # In this tutorial we will use a Sinusodial signal. # Set the peak amplitude. amplitude = 1.0 # Choose the sinusodial frequency via an oversampling ratio (OSR). frequency = 1.0 / (T * OSR * (1 << 0)) # We also specify a phase an offset these are hovewer optional. phase = 0.0 offset = 0.0 # Instantiate the analog signal analog_signal = Sinusodial(amplitude, frequency, phase, offset) print(analog_signal) ############################################################################### # Simulating # ---------- # # Each estimator will require an independent stream of control signals. # Therefore, we will next instantiate several digital controls and simulators. # Set simulation precision parameters atol = 1e-6 rtol = 1e-12 max_step = T / 10.
B = np.zeros((N, 1)) B[0, 0] = beta # B[0, 1] = -beta C = np.eye(N) Gamma_tilde = np.eye(N) Gamma = Gamma_tilde * (-beta) Ts = 1/(2 * beta) eta2 = 1e6 K1 = 1 << 12 K2 = 1 << 12 size = K2 << 4 analogSystem = AnalogSystem(A, B, C, Gamma, Gamma_tilde) digitalControl = DigitalControl(Ts, N) analogSignals = [Sinusodial(0.5, 1)] def controlSequence(): while True: yield np.ones(N, dtype=np.uint8) def test_filter_computation_parallel_estimator_algorithm(benchmark): def setup(): ParallelEstimator( analogSystem, digitalControl, eta2, K1, K2) benchmark(setup) def test_filter_computation_digital_estimator_algorithm(benchmark):
C = np.eye(N) Gamma_tilde = np.eye(N) Gamma = Gamma_tilde * (-beta) Ts = 1 / (2 * beta) amplitude = 1.0 frequency = 10. phase = 0. eta2 = 1e6 K1 = 1 << 12 K2 = 1 << 12 size = K2 << 4 analogSystem = AnalogSystem(A, B, C, Gamma, Gamma_tilde) digitalControl = DigitalControl(Ts, N) analogSignals = [Sinusodial(amplitude, frequency, phase)] def iterate_through(iterator): count = 0 for _ in range(size): next(iterator) count = count + 1 return count def test_benchmark_state_space_simulation_algorithm(benchmark): est = StateSpaceSimulator(analogSystem, digitalControl, analogSignals) result = benchmark(iterate_through, est) assert (result == size)
def test_initialization(): amplitude = 1.0 frequency = 42. Sinusodial(amplitude, frequency)
def test_estimation_with_circuit_simulator(): eta2 = 1e12 K1 = 1 << 10 K2 = 1 << 10 size = K2 << 2 window = 1000 size_2 = size // 2 window_2 = window // 2 left_w = size_2 - window_2 right_w = size_2 + window_2 analogSystem = AnalogSystem(A, B, CT, Gamma, Gamma_tildeT) analogSignals = [Sinusodial(amplitude, frequency, phase)] digitalControl1 = DigitalControl(Ts, M) digitalControl2 = DigitalControl(Ts, M) digitalControl3 = DigitalControl(Ts, M) digitalControl4 = DigitalControl(Ts, M) tf_abs = np.abs( analogSystem.transfer_function_matrix(np.array([2 * np.pi * frequency ]))) print(tf_abs, tf_abs.shape) simulator1 = StateSpaceSimulator(analogSystem, digitalControl1, analogSignals) simulator2 = StateSpaceSimulator(analogSystem, digitalControl2, analogSignals) simulator3 = StateSpaceSimulator(analogSystem, digitalControl3, analogSignals) simulator4 = StateSpaceSimulator(analogSystem, digitalControl4, analogSignals) estimator1 = DigitalEstimator(analogSystem, digitalControl1, eta2, K1, K2) estimator2 = ParallelEstimator(analogSystem, digitalControl2, eta2, K1, K2) estimator3 = FIRFilter(analogSystem, digitalControl3, eta2, K1, K2) estimator4 = IIRFilter(analogSystem, digitalControl4, eta2, K2) estimator1(simulator1) estimator2(simulator2) estimator3(simulator3) estimator4(simulator4) tf_1 = estimator1.signal_transfer_function( np.array([2 * np.pi * frequency]))[0] e1_array = np.zeros(size) e2_array = np.zeros(size) e3_array = np.zeros(size) e4_array = np.zeros(size) e1_error = 0 e2_error = 0 e3_error = 0 e4_error = 0 for index in range(size): e1 = estimator1.__next__() e2 = estimator2.__next__() e3 = estimator3.__next__() e4 = estimator4.__next__() e1_array[index] = e1 e2_array[index] = e2 e3_array[index] = e3 e4_array[index] = e4 t = index * Ts u = analogSignals[0].evaluate(t) u_lag = analogSignals[0].evaluate(t - estimator4.filter_lag() * Ts) if (index > left_w and index < right_w): print( f"Time: {t: 0.2f}, Input Signal: {u * tf_1}, e1: {e1}, e2: {e2}, e3: {e3}, e4: {e4}" ) e1_error += np.abs(e1 - u * tf_1)**2 e2_error += np.abs(e2 - u * tf_1)**2 e3_error += np.abs(e3 - u_lag * tf_1)**2 e4_error += np.abs(e4 - u_lag * tf_1)**2 e1_error /= window e2_error /= window e3_error /= window e4_error /= window print(f"""Digital estimator error: {e1_error}, {10 * np.log10(e1_error)} dB""") print(f"""Parallel estimator error: {e2_error}, {10 * np.log10(e2_error)} dB""") print(f"""FIR filter estimator error: {e3_error}, {10 * np.log10(e3_error)} dB""") print(f"""IIR filter estimator error: {e4_error}, {10 * np.log10(e4_error)} dB""") assert (np.allclose(e1_error, 0, rtol=1e-6, atol=1e-6)) assert (np.allclose(e2_error, 0, rtol=1e-6, atol=1e-6)) assert (np.allclose(e3_error, 0, rtol=1e-6, atol=1e-6)) assert (np.allclose(e4_error, 0, rtol=1e-6, atol=1e-6))
# For this tutorial, we will choose a # :py:class:`cbadc.analog_signal.Sinusodial`. Again, this is one of several # possible choices. # Set the peak amplitude. amplitude = 0.5 # Choose the sinusodial frequency via an oversampling ratio (OSR). OSR = 1 << 9 frequency = 1.0 / (T * OSR) # We also specify a phase an offset these are hovewer optional. phase = np.pi / 3 offset = 0.0 # Instantiate the analog signal analog_signal = Sinusodial(amplitude, frequency, phase, offset) # print to ensure correct parametrization. print(analog_signal) ############################################################################### # Simulating # ------------- # # Next, we set up the simulator. Here we use the # :py:class:`cbadc.simulator.StateSpaceSimulator` for simulating the # involved differential equations as outlined in # :py:class:`cbadc.analog_system.AnalogSystem`. # # Simulate for 2^18 control cycles. end_time = T * (1 << 18)