# Model cbow = CBOW(vocab_size=wcd.vocab_size, embed_dim=100) # Training Parameters n_epoch = 1000 learning_rate = 0.001 optimizer = optim.SGD(cbow.parameters(), lr=learning_rate) loss_fn = nn.NLLLoss() loss_list = [] # Use GPU, if available. device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") cbow.to(device) for epoch_i in range(n_epoch): for batch_i, (X, Y) in enumerate(data_loader): X, Y = X.to(device), Y.to(device) cbow.zero_grad() pred_log_prob = cbow(X) loss = loss_fn(pred_log_prob, Y) loss.backward() loss_list.append(float(loss.to('cpu').data.numpy())) optimizer.step() print("loss : {}".format(loss))
def train(_=None, corpus=None, corpus_path=None, context_size=2, min_word=1, embed_dim=100, n_epoch=10, batch_size=32, learning_rate=0.001, shuffle=True, verbose_iterval=1): if _: raise Exception("Don't put parameters without keys. Set parameters with the key together.") # Load data wcd = WordContextDataset(corpus=corpus, corpus_path=corpus_path, context_size=context_size, min_word=min_word) data_loader = DataLoader(wcd, batch_size=batch_size, shuffle=shuffle) # Model cbow = CBOW(vocab_size=wcd.vocab_size, embed_dim=embed_dim) # Training Parameters optimizer = optim.SGD(cbow.parameters(), lr=learning_rate) loss_fn = nn.NLLLoss() loss_list = [] # Use GPU, if available. device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") cbow.to(device) for epoch_i in range(n_epoch): for batch_i, (X, Y) in enumerate(data_loader): X, Y = X.to(device), Y.to(device) cbow.zero_grad() pred_log_prob = cbow(X) loss = loss_fn(pred_log_prob, Y) loss.backward() loss_list.append(float(loss.to('cpu').data.numpy())) optimizer.step() if epoch_i % verbose_iterval == 0: print("loss : {:.3f}".format(loss_list[-1])) return {'wcd': wcd, 'cbow': cbow, 'loss_list': loss_list, 'data_loader': data_loader}