def build_map(inmap, output, i, ntot, ns=1, g=0, sml=5., lmax=3 * 2048, prefix=''): ch_mkdir(dest) dont = 1 npatch = 12 * ns**2 for j in range(npatch): if not os.path.exists(output + prefix + str(i * npatch + j) + '.npy'): dont = 0 if dont: return if sml != 0: s = hp.read_map(inmap, nest=0, verbose=0) if g: s = kelvin_check(s) s = hp.smoothing(s, np.radians(sml / 60.), lmax=lmax, verbose=0) s = hp.reorder(s, r2n=1) else: s = hp.read_map(inmap, nest=1, verbose=0) patches = sky2patch(s, ns) for j in range(npatch): pop_percent(i * npatch + j, ntot * npatch) np.save(output + prefix + str(i * npatch + j), patches[j]) plt.imshow(patches[j], cmap=cmap) plt.savefig(output + prefix + str(i * npatch + j) + '.jpg') plt.close()
def download_simulation(i, typ, com_s): name_out = './maps/dx12_v3_{}_{}_mc_{:05d}_raw.fits'.format(com_s, typ, i) if os.path.exists(name_out): x = os.path.getsize(name_out) if x != 603987840: print(name_out, 'is corrupted!') os.remove(name_out) if not os.path.exists(name_out): ch_mkdir('maps') global TOTALSIZE TOTALSIZE = 100 / (589836 * 1024) name_in = 'http://pla.esac.esa.int/pla/aio/product-action?SIMULATED_MAP.FILE_ID=dx12_v3_{}_{}_mc_{:05d}_raw.fits'.format( com_s, typ, i) download(name_in, name_out, report=report) else: print(name_out, 'exist!') return name_out
# dl1.append(ll[j]*(ll[j]+1)*cl[j]/(2*np.pi)) # dl2.append(ll[j]*(ll[j]+1)*cl_map[j]/(2*np.pi)) # plt.plot(ll,dl2,'r--',label='Simulation') # plt.plot(ll,dl1,'b--',lw=2,label='Orginal') # plt.xscale('log') # plt.yscale('log') # plt.tick_params(labelsize=15) # plt.xlabel(r'$\ell$',fontsize=25) # plt.ylabel(r'$D_{\ell}$',fontsize=25) # plt.legend(loc='best',fontsize=20) # plt.savefig('../data/healpix/power_'+str(nside)+'_'+str(i)+'.jpg') # plt.close() ch_mkdir('../data/string/') for i in range(n_string): strnum = str(i + 1) if nside == 4096: strnum = strnum + 'b' if not os.path.exists('../data/string/map1n_allz_rtaapixlw_' + str(nside) + '_' + str(i + 1) + '.fits.' + ex): print('Downloading string: ' + str(i)) download( 'http://cp3.irmp.ucl.ac.be/~ringeval/upload/data/' + str(nside) + '/map1n_allz_rtaapixlw_' + str(nside) + '_' + strnum + '.fits.' + ex, '../data/string/map1n_allz_rtaapixlw_' + str(nside) + '_' + str(i + 1) + '.fits.' + ex) load_status = 0
import os import sys import glob from time import time import numpy as np import pylab as plt import ccgpack as ccg from scipy import stats cmap = plt.cm.jet cmap.set_under('w') cmap.set_bad('gray', 0.) add = 'processed_images/' ccg.ch_mkdir(add) gmulist = [0] + list(5 * 10**np.linspace(-8, -5, 10)) ngmu = len(gmulist) s2n = 10. i_map = int(sys.argv[1]) i_srg = int(sys.argv[2]) i_gmup = int(sys.argv[3]) def blocker(arr, nrows, ncols): h, w = arr.shape return (arr.reshape(h // nrows, nrows, -1, ncols).swapaxes(1, 2).reshape(-1, nrows, ncols))
def init_dirs(self): ch_mkdir(self.prefix) ch_mkdir(self.prefix + 'model') ch_mkdir(self.prefix + 'images')
def filtf(x): return ccg.filters(x, edd_method='sch') dp = DataProvider(x_files, y_files, alpha, nx=nx, ny=ny, n_buffer=2, reload_rate=10000, filt=filtf) model_add = './models/' + str(n_layers) + '_layers_f' + filt + '/' res_dir = './results/' + str(n_layers) + '_layers_f' + filt + '/' ccg.ch_mkdir(res_dir + 'plots') model = ng.Model(dp, restore=0, model_add=model_add + str(0), arch=arch) print('# of variables:', model.n_variables) if os.path.exists(res_dir + 'info.npy'): i, dp.alpha, dalpha, learning_rate = np.load(res_dir + 'info.npy') i = int(i) model.model_add = model_add + str(i) print('Loading model ' + str(i) + ' ...') model.restore() else: i = 0 for _ in range(ntry):
def p_value(lst): p_valu = [] num = len(lst) for i in range(num): class1 = lst[i] pvs = [] for j in range(num): if i!=j: class2 = lst[j] t , p = stats.ttest_ind(class1 , class2) pvs.append(p) p_valu.append(np.max(pvs)) return np.array(p_valu) ccg.ch_mkdir('../classic') gmulist = [0]+list(10**np.linspace(-8 , -5 , 10)) # IN CASE YOU WANT TO RUN IT parallel #igmu = int(sys.argv[1]) #gmulist = gmulist[igmu:igmu+1] ngmu = len(gmulist) tadd = '../data/test_set/healpix_p/' sim_name = tadd.split('/')[3] res_add = '../classic/'+sim_name+'/' ccg.ch_mkdir(res_add) print('Buiding classical method results:') for j,gmu in enumerate(gmulist): dir_name = '{:3.2e}'.format(gmu)
import os import sys from glob import glob from time import time import numpy as np import pylab as plt import ccgpack as ccg from scipy import stats cmap = plt.cm.jet cmap.set_under('w') cmap.set_bad('gray', 0.) add = 'processed_images/' ccg.ch_mkdir(add) add = 'processed_images/curveleted/' if os.path.exists(add + 'observations.npy'): exit() ccg.ch_mkdir(add) def blocker(arr, nrows, ncols): h, w = arr.shape return (arr.reshape(h // nrows, nrows, -1, ncols).swapaxes(1, 2).reshape(-1, nrows, ncols)) res = {}