def check_cb_op_perm(cb_op, perm): mi_cb = cb_op.apply(ra.miller_indices) miis = flex.random_permutation(size=ra.miller_indices.size())[:2] k = cb_op.apply(ra.miller_indices.select(miis)) matches = miller.match_indices(k, ra.miller_indices) pairs = matches.pairs() assert pairs.column(0).all_eq(flex.size_t_range(k.size())) miis_cb = pairs.column(1) assert perm.select(miis).all_eq(miis_cb)
def exercise_optimise_shelxl_weights(): def calc_goof(fo2, fc, w, k, n_params): fc2 = fc.as_intensity_array() w = w(fo2.data(), fo2.sigmas(), fc2.data(), k) return math.sqrt( flex.sum(w * flex.pow2(fo2.data() - k * fc2.data())) / (fo2.size() - n_params)) xs = smtbx.development.sucrose() k = 0.05 + 10 * flex.random_double() fc = xs.structure_factors(anomalous_flag=False, d_min=0.7).f_calc() fo = fc.as_amplitude_array() fo = fo.customized_copy(data=fo.data() * math.sqrt(k)) fo = fo.customized_copy(sigmas=0.03 * fo.data()) sigmas = fo.sigmas() for i in range(fo.size()): fo.data()[i] += 2 * scitbx.random.variate( scitbx.random.normal_distribution(sigma=sigmas[i]))() \ + 0.5*random.random() fo2 = fo.as_intensity_array() fc2 = fc.as_intensity_array() w = least_squares.mainstream_shelx_weighting(a=0.1) s = calc_goof(fo2, fc, w, k, xs.n_parameters()) w2 = w.optimise_parameters(fo2, fc2, k, xs.n_parameters()) s2 = calc_goof(fo2, fc, w2, k, xs.n_parameters()) # sort data and setup binning by fc/fc_max fc_sq = fc.as_intensity_array() fc_sq_over_fc_sq_max = fc_sq.data() / flex.max(fc_sq.data()) permutation = flex.sort_permutation(fc_sq_over_fc_sq_max) fc_sq_over_fc_sq_max = fc_sq.customized_copy( data=fc_sq_over_fc_sq_max).select(permutation) fc_sq = fc_sq.select(permutation) fo_sq = fo2.select(permutation) n_bins = 10 bin_max = 0 bin_limits = flex.size_t(1, 0) bin_count = flex.size_t() for i in range(n_bins): bin_limits.append(int(math.ceil((i + 1) * fc_sq.size() / n_bins))) bin_count.append(bin_limits[i + 1] - bin_limits[i]) goofs_w = flex.double() goofs_w2 = flex.double() for i_bin in range(n_bins): sel = flex.size_t_range(bin_limits[i_bin], bin_limits[i_bin + 1]) goofs_w2.append( calc_goof(fo_sq.select(sel), fc_sq.select(sel), w2, k, xs.n_parameters())) goofs_w.append( calc_goof(fo_sq.select(sel), fc_sq.select(sel), w, k, xs.n_parameters())) a = flex.mean_and_variance(goofs_w).unweighted_sample_variance() b = flex.mean_and_variance(goofs_w2).unweighted_sample_variance() assert a > b or abs(1 - s) > abs(1 - s2) assert a > b # flat analysis of variance assert abs(1 - s) > abs(1 - s2) # GooF close to 1
def e_pot(O, sites_moved): if ( O.last_sites_moved is None or O.last_sites_moved.id() != sites_moved.id()): O.last_sites_moved = sites_moved xs = O.fmodels.fmodel_xray().xray_structure assert len(sites_moved) == xs.scatterers().size() sites_cart = sites_moved xs.set_sites_cart(sites_cart=sites_cart) O.fmodels.update_xray_structure(update_f_calc=True) xs.scatterers().flags_set_grads(state=False) xs.scatterers().flags_set_grad_site( iselection=flex.size_t_range(xs.scatterers().size())) expected_g_size = len(sites_moved) * 3 if (O.xray_weight_factor is not None): tg = O.fmodels.target_and_gradients( weights=O.weights, compute_gradients=True) O.f = tg.target() * O.xray_weight_factor O.g = tg.gradients() * O.xray_weight_factor assert O.g.size() == expected_g_size else: O.f = 0. O.g = flex.double(expected_g_size, 0) if (O.reduced_geo_manager is None): reduced_geo_energies = None else: reduced_geo_energies = O.reduced_geo_manager.energies_sites( sites_cart=sites_cart, compute_gradients=True) other_energies = O.model.restraints_manager.energies_sites( sites_cart=sites_cart, geometry_flags=cctbx.geometry_restraints.flags.flags(nonbonded=True), custom_nonbonded_function=O.custom_nonbonded_function, compute_gradients=True) nfw = other_energies.normalization_factor * O.weights.w O.f += other_energies.target * O.weights.w gg = other_energies.gradients * O.weights.w if (reduced_geo_energies is not None): O.f += reduced_geo_energies.target * nfw gg += reduced_geo_energies.gradients * nfw assert nfw != 0 scale = 1 / nfw O.last_grms = group_args( geo=scale*flex.mean_sq(gg.as_double())**0.5, xray=scale*flex.mean_sq(O.g)**0.5, real_or_xray="xray") xray.minimization.add_gradients( scatterers=xs.scatterers(), xray_gradients=O.g, site_gradients=gg) O.f *= scale O.g *= scale O.last_grms.total = flex.mean_sq(O.g)**0.5 O.g = flex.vec3_double(O.g) return O.f
def e_pot(O, sites_moved): if (O.last_sites_moved is None or O.last_sites_moved.id() != sites_moved.id()): O.last_sites_moved = sites_moved xs = O.fmodels.fmodel_xray().xray_structure assert len(sites_moved) == xs.scatterers().size() sites_cart = sites_moved xs.set_sites_cart(sites_cart=sites_cart) O.fmodels.update_xray_structure(update_f_calc=True) xs.scatterers().flags_set_grads(state=False) xs.scatterers().flags_set_grad_site( iselection=flex.size_t_range(xs.scatterers().size())) expected_g_size = len(sites_moved) * 3 if (O.xray_weight_factor is not None): tg = O.fmodels.target_and_gradients(weights=O.weights, compute_gradients=True) O.f = tg.target() * O.xray_weight_factor O.g = tg.gradients() * O.xray_weight_factor assert O.g.size() == expected_g_size else: O.f = 0. O.g = flex.double(expected_g_size, 0) if (O.reduced_geo_manager is None): reduced_geo_energies = None else: reduced_geo_energies = O.reduced_geo_manager.energies_sites( sites_cart=sites_cart, compute_gradients=True) other_energies = O.model.restraints_manager.energies_sites( sites_cart=sites_cart, geometry_flags=cctbx.geometry_restraints.flags.flags( nonbonded=True), custom_nonbonded_function=O.custom_nonbonded_function, compute_gradients=True) nfw = other_energies.normalization_factor * O.weights.w O.f += other_energies.target * O.weights.w gg = other_energies.gradients * O.weights.w if (reduced_geo_energies is not None): O.f += reduced_geo_energies.target * nfw gg += reduced_geo_energies.gradients * nfw assert nfw != 0 scale = 1 / nfw O.last_grms = group_args(geo=scale * flex.mean_sq(gg.as_double())**0.5, xray=scale * flex.mean_sq(O.g)**0.5, real_or_xray="xray") xray.minimization.add_gradients(scatterers=xs.scatterers(), xray_gradients=O.g, site_gradients=gg) O.f *= scale O.g *= scale O.last_grms.total = flex.mean_sq(O.g)**0.5 O.g = flex.vec3_double(O.g) return O.f
def exercise_optimise_shelxl_weights(): def calc_goof(fo2, fc, w, k, n_params): fc2 = fc.as_intensity_array() w = w(fo2.data(), fo2.sigmas(), fc2.data(), k) return math.sqrt(flex.sum( w * flex.pow2(fo2.data() - k*fc2.data()))/(fo2.size() - n_params)) xs = smtbx.development.sucrose() k = 0.05 + 10 * flex.random_double() fc = xs.structure_factors(anomalous_flag=False, d_min=0.7).f_calc() fo = fc.as_amplitude_array() fo = fo.customized_copy(data=fo.data()*math.sqrt(k)) fo = fo.customized_copy(sigmas=0.03*fo.data()) sigmas = fo.sigmas() for i in range(fo.size()): fo.data()[i] += 2 * scitbx.random.variate( scitbx.random.normal_distribution(sigma=sigmas[i]))() \ + 0.5*random.random() fo2 = fo.as_intensity_array() fc2 = fc.as_intensity_array() w = least_squares.mainstream_shelx_weighting(a=0.1) s = calc_goof(fo2, fc, w, k, xs.n_parameters()) w2 = w.optimise_parameters(fo2, fc2, k, xs.n_parameters()) s2 = calc_goof(fo2, fc, w2, k, xs.n_parameters()) # sort data and setup binning by fc/fc_max fc_sq = fc.as_intensity_array() fc_sq_over_fc_sq_max = fc_sq.data()/flex.max(fc_sq.data()) permutation = flex.sort_permutation(fc_sq_over_fc_sq_max) fc_sq_over_fc_sq_max = fc_sq.customized_copy( data=fc_sq_over_fc_sq_max).select(permutation) fc_sq = fc_sq.select(permutation) fo_sq = fo2.select(permutation) n_bins = 10 bin_max = 0 bin_limits = flex.size_t(1, 0) bin_count = flex.size_t() for i in range(n_bins): bin_limits.append(int(math.ceil((i+1) * fc_sq.size()/n_bins))) bin_count.append(bin_limits[i+1] - bin_limits[i]) goofs_w = flex.double() goofs_w2 = flex.double() for i_bin in range(n_bins): sel = flex.size_t_range(bin_limits[i_bin], bin_limits[i_bin+1]) goofs_w2.append(calc_goof(fo_sq.select(sel), fc_sq.select(sel), w2, k, xs.n_parameters())) goofs_w.append(calc_goof(fo_sq.select(sel), fc_sq.select(sel), w, k, xs.n_parameters())) a = flex.mean_and_variance(goofs_w).unweighted_sample_variance() b = flex.mean_and_variance(goofs_w2).unweighted_sample_variance() assert a > b or abs(1-s) > abs(1-s2) assert a > b # flat analysis of variance assert abs(1-s) > abs(1-s2) # GooF close to 1
def optimise_parameters(self, fo_sq, fc_sq, scale_factor, n_independent_params): """ Find optimal values of a and b that give a flat analysis of the variance when binned by Fc/max(Fc), and a goodness of fit close to 1. This is done in a grid search fashion similar to Shelxl. self is not modified in place; instead a new instance of the weighting scheme is returned. It is intended that f_calc should already contain the contribution from f_mask (if a solvent mask is used). """ assert fc_sq.is_xray_intensity_array() weighting = ext.mainstream_shelx_weighting(a=self.a, b=self.b) def compute_chi_sq(fo_sq, fc_sq, a,b): weighting.a = a weighting.b = b weights = weighting( fo_sq.data(), fo_sq.sigmas(), fc_sq.data(), scale_factor) return (flex.sum( weights * flex.pow2(fo_sq.data() - scale_factor * fc_sq.data()))) fo_sq = fo_sq.deep_copy() fo_sq.data().set_selected(fo_sq.data() < 0, 0) fo2 = fo_sq.data().deep_copy() fo2 /= scale_factor sigmas = fo_sq.sigmas() / scale_factor sigmas_sq = flex.pow2(sigmas) fc2 = fc_sq.data() # determine starting values for a and b, formulae taken from shelxl code p = (fo2 + 2 * fc2)/3 p_sq = flex.pow2(p) x = flex.sum((flex.pow2(fo2-fc2)-sigmas) * (p_sq/sigmas_sq)) y = flex.sum( flex.pow2(p_sq)/sigmas_sq) z = flex.sum(p) start_a = math.sqrt(max(0.0001, 0.64*x/max(1e-8, y))) start_b = 0.5 * z * start_a**2 /fo_sq.size() a_step = 0.2 * start_a b_step = 0.4 * start_b # sort data and setup binning by fc/fc_max fc_sq_over_fc_sq_max = fc_sq.data()/flex.max(fc_sq.data()) permutation = flex.sort_permutation(fc_sq_over_fc_sq_max) fc_sq_over_fc_sq_max = fc_sq.customized_copy( data=fc_sq_over_fc_sq_max).select(permutation) fc_sq = fc_sq.select(permutation) fo_sq = fo_sq.select(permutation) n_bins = 10 bin_max = 0 bin_limits = flex.size_t(1, 0) bin_count = flex.size_t() for i in range(n_bins): bin_limits.append(int(math.ceil((i+1) * fc_sq.size()/n_bins))) bin_count.append(bin_limits[i+1] - bin_limits[i]) n = fo_sq.size()//(fo_sq.size()-n_independent_params) # search on a 9x9 grid to determine best values of a and b gridding = flex.grid(9,9) while (a_step > 1e-4 and b_step > 5e-3): tmp = flex.double(gridding, 0) binned_chi_sq = [tmp.deep_copy() for i in range(n_bins)] start_a = max(start_a, 4*a_step) - 4*a_step start_b = max(start_b, 4*b_step) - 4*b_step for i_bin in range(n_bins): sel = flex.size_t_range(bin_limits[i_bin], bin_limits[i_bin+1]) fc2 = fc_sq.select(sel) fo2 = fo_sq.select(sel) b = start_b for j in range(9): a = start_a b += b_step for k in range(9): a += a_step binned_chi_sq[i_bin][j,k] += compute_chi_sq(fo2, fc2, a, b) min_variance = 9e9 j_min, k_min = (0, 0) for j in range(9): for k in range(9): variance = 0 for i_bin in range(n_bins): if bin_count[i_bin] == 0: continue goof = math.sqrt(binned_chi_sq[i_bin][j,k]*n/bin_count[i_bin]) variance += (goof-1)**2 min_variance = min(variance, min_variance) if variance == min_variance: j_min = j k_min = k start_a += k_min*a_step start_b += j_min*b_step if k_min == 8: a_step *= 2 continue elif k_min != 0: a_step /= 4 if j_min == 8: b_step *= 2 continue elif j_min != 0: b_step /=4 if start_a <= 1e-4: a_step /= 4 if start_b <= 1e-3: b_step /= 4 if start_a > 0.2: start_a = 0.2 start_b = 0 weighting.a = start_a weighting.b = start_b return weighting
def exercise(verbose=0): distance_ideal = 1.8 default_vdw_distance = 3.6 vdw_1_4_factor = 3.5 / 3.6 sites_cart_manual = flex.vec3_double([(1, 3, 0), (2, 3, 0), (3, 2, 0), (3, 1, 0), (4, 1, 0), (3, 4, 0), (4, 3, 0), (5, 3, 0), (6, 2, 0), (7, 2, 0), (8, 3, 0), (7, 4, 0), (6, 4, 0), (7, 5, 0), (6, 6, 0), (8, 6, 0)]) bond_proxies = geometry_restraints.bond_sorted_asu_proxies( asu_mappings=None) for i_seqs in [(0, 1), (1, 2), (2, 3), (3, 4), (1, 5), (2, 6), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), (10, 11), (11, 12), (12, 7), (11, 13), (13, 14), (14, 15), (15, 13)]: bond_proxies.process( geometry_restraints.bond_simple_proxy( i_seqs=i_seqs, distance_ideal=distance_ideal, weight=100)) angle_proxies = geometry_restraints.shared_angle_proxy() for i_seqs, angle_ideal in [[(0, 1, 2), 135], [(0, 1, 5), 135], [(1, 2, 3), 135], [(3, 2, 6), 135], [(2, 3, 4), 120], [(1, 2, 6), 90], [(2, 6, 5), 90], [(6, 5, 1), 90], [(5, 1, 2), 90], [(2, 6, 7), 135], [(5, 6, 7), 135], [(6, 7, 8), 120], [(6, 7, 12), 120], [(7, 8, 9), 120], [(8, 9, 10), 120], [(9, 10, 11), 120], [(10, 11, 12), 120], [(11, 12, 7), 120], [(12, 7, 8), 120], [(10, 11, 13), 120], [(12, 11, 13), 120], [(11, 13, 15), 150], [(11, 13, 14), 150], [(13, 15, 14), 60], [(15, 14, 13), 60], [(14, 13, 15), 60]]: angle_proxies.append( geometry_restraints.angle_proxy(i_seqs=i_seqs, angle_ideal=angle_ideal, weight=1)) if (0 or verbose): dump_pdb(file_name="manual.pdb", sites_cart=sites_cart_manual) for traditional_convergence_test in [True, False]: for sites_cart_selection in [True, False]: sites_cart = sites_cart_manual.deep_copy() if sites_cart_selection: sites_cart_selection = flex.bool(sites_cart.size(), True) sites_cart_selection[1] = False assert bond_proxies.asu.size() == 0 bond_params_table = geometry_restraints.extract_bond_params( n_seq=sites_cart.size(), bond_simple_proxies=bond_proxies.simple) manager = geometry_restraints.manager.manager( bond_params_table=bond_params_table, angle_proxies=angle_proxies) minimized = geometry_restraints.lbfgs.lbfgs( sites_cart=sites_cart, geometry_restraints_manager=manager, lbfgs_termination_params=scitbx.lbfgs.termination_parameters( traditional_convergence_test=traditional_convergence_test, drop_convergence_test_max_drop_eps=1.e-20, drop_convergence_test_iteration_coefficient=1, max_iterations=1000), sites_cart_selection=sites_cart_selection, ) assert minimized.minimizer.iter() > 100 sites_cart_minimized_1 = sites_cart.deep_copy() if (0 or verbose): dump_pdb(file_name="minimized_1.pdb", sites_cart=sites_cart_minimized_1) bond_deltas = geometry_restraints.bond_deltas( sites_cart=sites_cart_minimized_1, proxies=bond_proxies.simple) angle_deltas = geometry_restraints.angle_deltas( sites_cart=sites_cart_minimized_1, proxies=angle_proxies) if (0 or verbose): for proxy, delta in zip(bond_proxies.simple, bond_deltas): print "bond:", proxy.i_seqs, delta for proxy, delta in zip(angle_proxies, angle_deltas): print "angle:", proxy.i_seqs, delta assert is_below_limit(value=flex.max(flex.abs(bond_deltas)), limit=0, eps=1.e-6) assert is_below_limit(value=flex.max(flex.abs(angle_deltas)), limit=0, eps=2.e-6) sites_cart += matrix.col((1, 1, 0)) - matrix.col(sites_cart.min()) unit_cell_lengths = list( matrix.col(sites_cart.max()) + matrix.col((1, -1.2, 4))) unit_cell_lengths[1] *= 2 unit_cell_lengths[2] *= 2 xray_structure = xray.structure(crystal_symmetry=crystal.symmetry( unit_cell=unit_cell_lengths, space_group_symbol="P112")) for serial, site in zip(count(1), sites_cart): xray_structure.add_scatterer( xray.scatterer( label="C%02d" % serial, site=xray_structure.unit_cell().fractionalize(site))) if (0 or verbose): xray_structure.show_summary().show_scatterers() p1_structure = (xray_structure.apply_shift( (-.5, -.5, 0)).expand_to_p1().apply_shift((.5, .5, 0))) for shift in [(1, 0, 0), (0, 1, 0), (0, 0, 1)]: p1_structure.add_scatterers( p1_structure.apply_shift(shift).scatterers()) if (0 or verbose): open("p1_structure.pdb", "w").write(p1_structure.as_pdb_file()) nonbonded_cutoff = 6.5 asu_mappings = xray_structure.asu_mappings( buffer_thickness=nonbonded_cutoff) bond_asu_table = crystal.pair_asu_table(asu_mappings=asu_mappings) geometry_restraints.add_pairs(bond_asu_table, bond_proxies.simple) shell_asu_tables = crystal.coordination_sequences.shell_asu_tables( pair_asu_table=bond_asu_table, max_shell=3) shell_sym_tables = [ shell_asu_table.extract_pair_sym_table() for shell_asu_table in shell_asu_tables ] bond_params_table = geometry_restraints.extract_bond_params( n_seq=sites_cart.size(), bond_simple_proxies=bond_proxies.simple) atom_energy_types = flex.std_string(sites_cart.size(), "Default") nonbonded_params = geometry_restraints.nonbonded_params( factor_1_4_interactions=vdw_1_4_factor, const_shrink_1_4_interactions=0, default_distance=default_vdw_distance) nonbonded_params.distance_table.setdefault( "Default")["Default"] = default_vdw_distance pair_proxies = geometry_restraints.pair_proxies( bond_params_table=bond_params_table, shell_asu_tables=shell_asu_tables, model_indices=None, conformer_indices=None, nonbonded_params=nonbonded_params, nonbonded_types=atom_energy_types, nonbonded_distance_cutoff_plus_buffer=nonbonded_cutoff) if (0 or verbose): print "pair_proxies.bond_proxies.n_total():", \ pair_proxies.bond_proxies.n_total(), print "simple:", pair_proxies.bond_proxies.simple.size(), print "sym:", pair_proxies.bond_proxies.asu.size() print "pair_proxies.nonbonded_proxies.n_total():", \ pair_proxies.nonbonded_proxies.n_total(), print "simple:", pair_proxies.nonbonded_proxies.simple.size(), print "sym:", pair_proxies.nonbonded_proxies.asu.size() print "min_distance_nonbonded: %.2f" % flex.min( geometry_restraints.nonbonded_deltas( sites_cart=sites_cart, sorted_asu_proxies=pair_proxies.nonbonded_proxies)) s = StringIO() pair_proxies.bond_proxies.show_histogram_of_model_distances( sites_cart=sites_cart, f=s, prefix="[]") assert s.getvalue().splitlines()[0] == "[]Histogram of bond lengths:" assert s.getvalue().splitlines()[5].startswith("[] 1.80 - 1.80:") s = StringIO() pair_proxies.bond_proxies.show_histogram_of_deltas(sites_cart=sites_cart, f=s, prefix="][") assert s.getvalue().splitlines()[0] == "][Histogram of bond deltas:" assert s.getvalue().splitlines()[5].startswith("][ 0.000 - 0.000:") s = StringIO() pair_proxies.bond_proxies.show_sorted(by_value="residual", sites_cart=sites_cart, max_items=3, f=s, prefix=":;") l = s.getvalue().splitlines() assert l[0] == ":;Bond restraints: 18" assert l[1] == ":;Sorted by residual:" assert l[2].startswith(":;bond ") assert l[3].startswith(":; ") assert l[4] == ":; ideal model delta sigma weight residual" for i in [5, -2]: assert l[i].startswith(":; 1.800 1.800 ") assert l[-1] == ":;... (remaining 15 not shown)" s = StringIO() pair_proxies.nonbonded_proxies.show_histogram_of_model_distances( sites_cart=sites_cart, f=s, prefix="]^") assert not show_diff( s.getvalue(), """\ ]^Histogram of nonbonded interaction distances: ]^ 2.16 - 3.03: 3 ]^ 3.03 - 3.89: 12 ]^ 3.89 - 4.75: 28 ]^ 4.75 - 5.61: 44 ]^ 5.61 - 6.48: 54 """) s = StringIO() pair_proxies.nonbonded_proxies.show_sorted(by_value="delta", sites_cart=sites_cart, max_items=7, f=s, prefix=">,") assert not show_diff(s.getvalue(), """\ >,Nonbonded interactions: 141 >,Sorted by model distance: >,nonbonded 15 >, 15 >, model vdw sym.op. >, 2.164 3.600 -x+2,-y+1,z ... >,nonbonded 4 >, 8 >, model vdw >, 3.414 3.600 >,... (remaining 134 not shown) """, selections=[range(6), range(-5, 0)]) vdw_1_sticks = [] vdw_2_sticks = [] for proxy in pair_proxies.nonbonded_proxies.simple: if (proxy.vdw_distance == default_vdw_distance): vdw_1_sticks.append( pml_stick(begin=sites_cart[proxy.i_seqs[0]], end=sites_cart[proxy.i_seqs[1]])) else: vdw_2_sticks.append( pml_stick(begin=sites_cart[proxy.i_seqs[0]], end=sites_cart[proxy.i_seqs[1]])) mps = asu_mappings.mappings() for proxy in pair_proxies.nonbonded_proxies.asu: if (proxy.vdw_distance == default_vdw_distance): vdw_1_sticks.append( pml_stick(begin=mps[proxy.i_seq][0].mapped_site(), end=mps[proxy.j_seq][proxy.j_sym].mapped_site())) else: vdw_2_sticks.append( pml_stick(begin=mps[proxy.i_seq][0].mapped_site(), end=mps[proxy.j_seq][proxy.j_sym].mapped_site())) if (0 or verbose): pml_write(f=open("vdw_1.pml", "w"), label="vdw_1", sticks=vdw_1_sticks) pml_write(f=open("vdw_2.pml", "w"), label="vdw_2", sticks=vdw_2_sticks) # i_pdb = count(2) for use_crystal_symmetry in [False, True]: if (not use_crystal_symmetry): crystal_symmetry = None site_symmetry_table = None else: crystal_symmetry = xray_structure site_symmetry_table = xray_structure.site_symmetry_table() for sites_cart in [ sites_cart_manual.deep_copy(), sites_cart_minimized_1.deep_copy() ]: manager = geometry_restraints.manager.manager( crystal_symmetry=crystal_symmetry, site_symmetry_table=site_symmetry_table, nonbonded_params=nonbonded_params, nonbonded_types=atom_energy_types, nonbonded_function=geometry_restraints. prolsq_repulsion_function(), bond_params_table=bond_params_table, shell_sym_tables=shell_sym_tables, nonbonded_distance_cutoff=nonbonded_cutoff, nonbonded_buffer=1, angle_proxies=angle_proxies, plain_pairs_radius=5) manager = manager.select( selection=flex.bool(sites_cart.size(), True)) manager = manager.select(iselection=flex.size_t_range( stop=sites_cart.size())) pair_proxies = manager.pair_proxies(sites_cart=sites_cart) minimized = geometry_restraints.lbfgs.lbfgs( sites_cart=sites_cart, geometry_restraints_manager=manager, lbfgs_termination_params=scitbx.lbfgs.termination_parameters( max_iterations=1000)) if (0 or verbose): minimized.final_target_result.show() print "number of function evaluations:", minimized.minimizer.nfun( ) print "n_updates_pair_proxies:", manager.n_updates_pair_proxies if (not use_crystal_symmetry): assert minimized.final_target_result.bond_residual_sum < 1.e-3 assert minimized.final_target_result.nonbonded_residual_sum < 0.1 else: assert minimized.final_target_result.bond_residual_sum < 1.e-2 assert minimized.final_target_result.nonbonded_residual_sum < 0.1 assert minimized.final_target_result.angle_residual_sum < 1.e-3 if (0 or verbose): pdb_file_name = "minimized_%d.pdb" % i_pdb.next() print "Writing file:", pdb_file_name dump_pdb(file_name=pdb_file_name, sites_cart=sites_cart) if (manager.site_symmetry_table is None): additional_site_symmetry_table = None else: additional_site_symmetry_table = sgtbx.site_symmetry_table() assert manager.new_including_isolated_sites( n_additional_sites=0, site_symmetry_table=additional_site_symmetry_table, nonbonded_types=flex.std_string()).plain_pairs_radius \ == manager.plain_pairs_radius if (crystal_symmetry is not None): assert len(manager.plain_pair_sym_table) == 16 if (0 or verbose): manager.plain_pair_sym_table.show() # xray_structure.set_u_iso(values=flex.double([ 0.77599982480241358, 0.38745781137212021, 0.20667558236418682, 0.99759840171302094, 0.8917287406687805, 0.64780251325379845, 0.24878590382983534, 0.59480621182194615, 0.58695637792905142, 0.33997130213653637, 0.51258699130743735, 0.79760289141276675, 0.39996577657875021, 0.4329328819341467, 0.70422156561726479, 0.87260110626999332 ])) class parameters: pass parameters.sphere_radius = 5 parameters.distance_power = 0.7 parameters.average_power = 0.9 parameters.wilson_b_weight = 1.3952 parameters.wilson_b_weight_auto = False adp_energies = adp_restraints.energies_iso( geometry_restraints_manager=manager, xray_structure=xray_structure, parameters=parameters, wilson_b=None, use_hd=False, use_u_local_only=False, compute_gradients=False, gradients=None, normalization=False, collect=True) assert adp_energies.number_of_restraints == 69 assert approx_equal(adp_energies.residual_sum, 6.24865382467) assert adp_energies.gradients is None assert adp_energies.u_i.size() == adp_energies.number_of_restraints assert adp_energies.u_j.size() == adp_energies.number_of_restraints assert adp_energies.r_ij.size() == adp_energies.number_of_restraints for wilson_b in [None, 10, 100]: finite_difference_gradients = flex.double() eps = 1.e-6 for i_scatterer in xrange(xray_structure.scatterers().size()): rs = [] for signed_eps in [eps, -eps]: xray_structure_eps = xray_structure.deep_copy_scatterers() xray_structure_eps.scatterers( )[i_scatterer].u_iso += signed_eps adp_energies = adp_restraints.energies_iso( geometry_restraints_manager=manager, xray_structure=xray_structure_eps, parameters=parameters, wilson_b=wilson_b, use_u_local_only=False, use_hd=False, compute_gradients=True, gradients=None, normalization=False, collect=False) rs.append(adp_energies.residual_sum) assert adp_energies.gradients.size() \ == xray_structure.scatterers().size() assert adp_energies.u_i == None assert adp_energies.u_j == None assert adp_energies.r_ij == None finite_difference_gradients.append((rs[0] - rs[1]) / (2 * eps)) sel = flex.bool(xray_structure.scatterers().size(), True) xray_structure.scatterers().flags_set_grad_u_iso(sel.iselection()) adp_energies = adp_restraints.energies_iso( geometry_restraints_manager=manager, xray_structure=xray_structure, parameters=parameters, wilson_b=wilson_b, use_u_local_only=False, use_hd=False, compute_gradients=True, gradients=None, normalization=False, collect=False) assert approx_equal(adp_energies.gradients, finite_difference_gradients) print "OK"
def exercise_affine_occupancy_parameter(): xs = xray.structure(crystal_symmetry=crystal.symmetry( unit_cell=(), space_group_symbol='hall: P 1'), scatterers=flex.xray_scatterer(( xray.scatterer('C0', occupancy=1), xray.scatterer('C1', occupancy=1), xray.scatterer('C2', occupancy=1), xray.scatterer('C3', occupancy=1), ))) sc = xs.scatterers() sc.flags_set_grad_occupancy(flex.size_t_range(4)) # Two occupancies adding up to 1 (most common case of disorder) r = constraints.ext.reparametrisation(xs.unit_cell()) occ_1 = r.add(constraints.independent_occupancy_parameter, sc[1]) occ_3 = r.add(constraints.affine_asu_occupancy_parameter, dependee=occ_1, a=-1, b=1, scatterer=sc[3]) r.finalise() r.linearise() assert approx_equal(occ_1.value, 1) assert approx_equal(occ_3.value, 0) jt0 = sparse.matrix( 1, 2, [ { 0: 1 }, # 1st col = derivatives of occ_1 { 0: -1 }, # 2nd col = derivatives of occ_3 ]) assert sparse.approx_equal(tolerance=1e-15)(r.jacobian_transpose, jt0) # Example illustrating the instruction SUMP in SHELX 97 manual (p. 7-26) # We disregard the issue of the special position which is orthogonal to the # point we want to test here. xs = xray.structure(crystal_symmetry=crystal.symmetry( unit_cell=(), space_group_symbol='hall: P 1'), scatterers=flex.xray_scatterer(( xray.scatterer('Na+', occupancy=1), xray.scatterer('Ca2+', occupancy=1), xray.scatterer('Al3+', occupancy=0.35), xray.scatterer('K+', occupancy=0.15), ))) sc = xs.scatterers() sc.flags_set_grad_occupancy(flex.size_t_range(4)) # The constraints are: # fully occupied: occ(Na+) + occ(Ca2+) + occ(Al3+) + occ(K+) = 1 # average charge +2: occ(Na+) + 2 occ(Ca2+) + 3 occ(Al3+) + occ(K+) = +2 # This can be solved as: # occ(Na+) = occ(Al3+) - occ(K+) # occ(Ca2+) = 1 - 2 occ(Al3+) r = constraints.ext.reparametrisation(xs.unit_cell()) occ_Al = r.add(constraints.independent_occupancy_parameter, sc[2]) occ_K = r.add(constraints.independent_occupancy_parameter, sc[3]) occ_Na = r.add(constraints.affine_asu_occupancy_parameter, occ_Al, 1, occ_K, -1, 0, scatterer=sc[0]) occ_Ca = r.add(constraints.affine_asu_occupancy_parameter, occ_Al, -2, 1, scatterer=sc[1]) r.finalise() r.linearise() assert approx_equal(occ_Na.value, 0.2) assert approx_equal(occ_Ca.value, 0.3) assert approx_equal(occ_Al.value, 0.35) assert approx_equal(occ_K.value, 0.15) jt0 = sparse.matrix( 2, 4, [ { 0: 1 }, # diff occ(Al3+) { 1: 1 }, # diff occ(K+) { 0: 1, 1: -1 }, # diff occ(Na+) { 0: -2 }, # diff occ(Ca2+) ]) assert sparse.approx_equal(tolerance=1e-15)(r.jacobian_transpose, jt0)
def exercise_floating_origin_dynamic_weighting(verbose=False): from cctbx import covariance import scitbx.math worst_condition_number_acceptable = 10 # light elements only xs0 = random_structure.xray_structure(elements=['C', 'C', 'C', 'O', 'N'], use_u_aniso=True) msg = "light elements in %s ..." % ( xs0.space_group_info().type().hall_symbol()) if verbose: print(msg, end=' ') fo_sq = xs0.structure_factors(d_min=0.8).f_calc().norm() fo_sq = fo_sq.customized_copy(sigmas=flex.double(fo_sq.size(), 1.)) xs = xs0.deep_copy_scatterers() xs.shake_adp() xs.shake_sites_in_place(rms_difference=0.1) for sc in xs.scatterers(): sc.flags.set_grad_site(True).set_grad_u_aniso(True) ls = least_squares.crystallographic_ls( fo_sq.as_xray_observations(), constraints.reparametrisation( structure=xs, constraints=[], connectivity_table=smtbx.utils.connectivity_table(xs)), weighting_scheme=least_squares.unit_weighting(), origin_fixing_restraints_type= origin_fixing_restraints.atomic_number_weighting) ls.build_up() lambdas = eigensystem.real_symmetric( ls.normal_matrix_packed_u().matrix_packed_u_as_symmetric()).values() # assert the restrained L.S. problem is not too ill-conditionned cond = math.log10(lambdas[0]/lambdas[-1]) if verbose: print("normal matrix condition: %.1f" % cond) assert cond < worst_condition_number_acceptable, msg # one heavy element xs0 = random_structure.xray_structure( space_group_info=sgtbx.space_group_info('hall: P 2yb'), elements=['Zn', 'C', 'C', 'C', 'O', 'N'], use_u_aniso=True) msg = "one heavy element + light elements (synthetic data) in %s ..." % ( xs0.space_group_info().type().hall_symbol()) if verbose: print(msg, end=' ') fo_sq = xs0.structure_factors(d_min=0.8).f_calc().norm() fo_sq = fo_sq.customized_copy(sigmas=flex.double(fo_sq.size(), 1.)) xs = xs0.deep_copy_scatterers() xs.shake_adp() xs.shake_sites_in_place(rms_difference=0.1) for sc in xs.scatterers(): sc.flags.set_grad_site(True).set_grad_u_aniso(True) ls = least_squares.crystallographic_ls( fo_sq.as_xray_observations(), constraints.reparametrisation( structure=xs, constraints=[], connectivity_table=smtbx.utils.connectivity_table(xs)), weighting_scheme=least_squares.mainstream_shelx_weighting(), origin_fixing_restraints_type= origin_fixing_restraints.atomic_number_weighting) ls.build_up() lambdas = eigensystem.real_symmetric( ls.normal_matrix_packed_u().matrix_packed_u_as_symmetric()).values() # assert the restrained L.S. problem is not too ill-conditionned cond = math.log10(lambdas[0]/lambdas[-1]) if verbose: print("normal matrix condition: %.1f" % cond) assert cond < worst_condition_number_acceptable, msg # are esd's for x,y,z coordinates of the same order of magnitude? var_cart = covariance.orthogonalize_covariance_matrix( ls.covariance_matrix(), xs.unit_cell(), xs.parameter_map()) var_site_cart = covariance.extract_covariance_matrix_for_sites( flex.size_t_range(len(xs.scatterers())), var_cart, xs.parameter_map()) site_esds = var_site_cart.matrix_packed_u_diagonal() indicators = flex.double() for i in xrange(0, len(site_esds), 3): stats = scitbx.math.basic_statistics(site_esds[i:i+3]) indicators.append(stats.bias_corrected_standard_deviation/stats.mean) assert indicators.all_lt(2) # especially troublesome structure with one heavy element # (contributed by Jonathan Coome) xs0 = xray.structure( crystal_symmetry=crystal.symmetry( unit_cell=(8.4519, 8.4632, 18.7887, 90, 96.921, 90), space_group_symbol="hall: P 2yb"), scatterers=flex.xray_scatterer([ xray.scatterer( #0 label="ZN1", site=(-0.736683, -0.313978, -0.246902), u=(0.000302, 0.000323, 0.000054, 0.000011, 0.000015, -0.000004)), xray.scatterer( #1 label="N3B", site=(-0.721014, -0.313583, -0.134277), u=(0.000268, 0.000237, 0.000055, -0.000027, 0.000005, 0.000006)), xray.scatterer( #2 label="N3A", site=(-0.733619, -0.290423, -0.357921), u=(0.000229, 0.000313, 0.000053, 0.000022, 0.000018, -0.000018)), xray.scatterer( #3 label="C9B", site=(-1.101537, -0.120157, -0.138063), u=(0.000315, 0.000345, 0.000103, 0.000050, 0.000055, -0.000017)), xray.scatterer( #4 label="N5B", site=(-0.962032, -0.220345, -0.222045), u=(0.000274, 0.000392, 0.000060, -0.000011, -0.000001, -0.000002)), xray.scatterer( #5 label="N1B", site=(-0.498153, -0.402742, -0.208698), u=(0.000252, 0.000306, 0.000063, 0.000000, 0.000007, 0.000018)), xray.scatterer( #6 label="C3B", site=(-0.322492, -0.472610, -0.114594), u=(0.000302, 0.000331, 0.000085, 0.000016, -0.000013, 0.000037)), xray.scatterer( #7 label="C4B", site=(-0.591851, -0.368163, -0.094677), u=(0.000262, 0.000255, 0.000073, -0.000034, 0.000027, -0.000004)), xray.scatterer( #8 label="N4B", site=(-0.969383, -0.204624, -0.150014), u=(0.000279, 0.000259, 0.000070, -0.000009, 0.000039, 0.000000)), xray.scatterer( #9 label="N2B", site=(-0.470538, -0.414572, -0.135526), u=(0.000277, 0.000282, 0.000065, 0.000003, 0.000021, -0.000006)), xray.scatterer( #10 label="C8A", site=(-0.679889, -0.158646, -0.385629), u=(0.000209, 0.000290, 0.000078, 0.000060, 0.000006, 0.000016)), xray.scatterer( #11 label="N5A", site=(-0.649210, -0.075518, -0.263412), u=(0.000307, 0.000335, 0.000057, -0.000002, 0.000016, -0.000012)), xray.scatterer( #12 label="C6B", site=(-0.708620, -0.325965, 0.011657), u=(0.000503, 0.000318, 0.000053, -0.000058, 0.000032, -0.000019)), xray.scatterer( #13 label="C10B", site=(-1.179332, -0.083184, -0.202815), u=(0.000280, 0.000424, 0.000136, 0.000094, 0.000006, 0.000013)), xray.scatterer( #14 label="N1A", site=(-0.838363, -0.532191, -0.293213), u=(0.000312, 0.000323, 0.000060, 0.000018, 0.000011, -0.000008)), xray.scatterer( #15 label="C3A", site=(-0.915414, -0.671031, -0.393826), u=(0.000319, 0.000384, 0.000078, -0.000052, -0.000001, -0.000020)), xray.scatterer( #16 label="C1A", site=(-0.907466, -0.665419, -0.276011), u=(0.000371, 0.000315, 0.000079, 0.000006, 0.000036, 0.000033)), xray.scatterer( #17 label="C1B", site=(-0.365085, -0.452753, -0.231927), u=(0.000321, 0.000253, 0.000087, -0.000024, 0.000047, -0.000034)), xray.scatterer( #18 label="C11A", site=(-0.598622, 0.053343, -0.227354), u=(0.000265, 0.000409, 0.000084, 0.000088, -0.000018, -0.000030)), xray.scatterer( #19 label="C2A", site=(-0.958694, -0.755645, -0.337016), u=(0.000394, 0.000350, 0.000106, -0.000057, 0.000027, -0.000005)), xray.scatterer( #20 label="C4A", site=(-0.784860, -0.407601, -0.402050), u=(0.000238, 0.000296, 0.000064, 0.000002, 0.000011, -0.000016)), xray.scatterer( #21 label="C5A", site=(-0.784185, -0.399716, -0.475491), u=(0.000310, 0.000364, 0.000062, 0.000044, -0.000011, -0.000017)), xray.scatterer( #22 label="N4A", site=(-0.630284, -0.043981, -0.333143), u=(0.000290, 0.000275, 0.000074, 0.000021, 0.000027, 0.000013)), xray.scatterer( #23 label="C10A", site=(-0.545465, 0.166922, -0.272829), u=(0.000369, 0.000253, 0.000117, 0.000015, -0.000002, -0.000008)), xray.scatterer( #24 label="C9A", site=(-0.567548, 0.102272, -0.339923), u=(0.000346, 0.000335, 0.000103, -0.000016, 0.000037, 0.000023)), xray.scatterer( #25 label="C11B", site=(-1.089943, -0.146930, -0.253779), u=(0.000262, 0.000422, 0.000102, -0.000018, -0.000002, 0.000029)), xray.scatterer( #26 label="N2A", site=(-0.843385, -0.537780, -0.366515), u=(0.000273, 0.000309, 0.000055, -0.000012, -0.000005, -0.000018)), xray.scatterer( #27 label="C7A", site=(-0.674021, -0.136086, -0.457790), u=(0.000362, 0.000378, 0.000074, 0.000043, 0.000034, 0.000016)), xray.scatterer( #28 label="C8B", site=(-0.843625, -0.264182, -0.102023), u=(0.000264, 0.000275, 0.000072, -0.000025, 0.000019, -0.000005)), xray.scatterer( #29 label="C6A", site=(-0.726731, -0.261702, -0.502366), u=(0.000339, 0.000472, 0.000064, 0.000062, -0.000003, 0.000028)), xray.scatterer( #30 label="C5B", site=(-0.577197, -0.376753, -0.020800), u=(0.000349, 0.000353, 0.000066, -0.000082, -0.000022, 0.000014)), xray.scatterer( #31 label="C2B", site=(-0.252088, -0.497338, -0.175057), u=(0.000251, 0.000342, 0.000119, 0.000020, 0.000034, -0.000018)), xray.scatterer( #32 label="C7B", site=(-0.843956, -0.268811, -0.028080), u=(0.000344, 0.000377, 0.000078, -0.000029, 0.000059, -0.000007)), xray.scatterer( #33 label="F4B", site=(-0.680814, -0.696808, -0.115056), u=(0.000670, 0.000408, 0.000109, -0.000099, 0.000139, -0.000031)), xray.scatterer( #34 label="F1B", site=(-0.780326, -0.921249, -0.073962), u=(0.000687, 0.000357, 0.000128, -0.000152, -0.000011, 0.000021)), xray.scatterer( #35 label="B1B", site=(-0.795220, -0.758128, -0.075955), u=(0.000413, 0.000418, 0.000075, 0.000054, 0.000045, 0.000023)), xray.scatterer( #36 label="F2B", site=(-0.945140, -0.714626, -0.105820), u=(0.000584, 0.001371, 0.000108, 0.000420, 0.000067, 0.000134)), xray.scatterer( #37 label="F3B", site=(-0.768914, -0.701660, -0.005161), u=(0.000678, 0.000544, 0.000079, -0.000000, 0.000090, -0.000021)), xray.scatterer( #38 label="F1A", site=(-0.109283, -0.252334, -0.429288), u=(0.000427, 0.001704, 0.000125, 0.000407, 0.000041, 0.000035)), xray.scatterer( #39 label="F4A", site=(-0.341552, -0.262864, -0.502023), u=(0.000640, 0.000557, 0.000081, -0.000074, 0.000042, -0.000052)), xray.scatterer( #40 label="F3A", site=(-0.324533, -0.142292, -0.393215), u=(0.000471, 0.001203, 0.000134, 0.000333, -0.000057, -0.000220)), xray.scatterer( #41 label="F2A", site=(-0.312838, -0.405405, -0.400231), u=(0.002822, 0.000831, 0.000092, -0.000648, 0.000115, 0.000027)), xray.scatterer( #42 label="B1A", site=(-0.271589, -0.268874, -0.430724), u=(0.000643, 0.000443, 0.000079, 0.000040, 0.000052, -0.000034)), xray.scatterer( #43 label="H5B", site=(-0.475808, -0.413802, 0.004402), u=0.005270), xray.scatterer( #44 label="H6B", site=(-0.699519, -0.326233, 0.062781), u=0.019940), xray.scatterer( #45 label="H3B", site=(-0.283410, -0.484757, -0.063922), u=0.029990), xray.scatterer( #46 label="H1B", site=(-0.357103, -0.451819, -0.284911), u=0.031070), xray.scatterer( #47 label="H10A", site=(-0.495517, 0.268296, -0.256187), u=0.027610), xray.scatterer( #48 label="H2B", site=(-0.147129, -0.535141, -0.174699), u=0.017930), xray.scatterer( #49 label="H7A", site=(-0.643658, -0.031387, -0.475357), u=0.020200), xray.scatterer( #50 label="H1A", site=(-0.912757, -0.691043, -0.227554), u=0.033320), xray.scatterer( #51 label="H7B", site=(-0.933670, -0.241189, -0.010263), u=0.021310), xray.scatterer( #52 label="H11B", site=(-1.107736, -0.155470, -0.311996), u=0.041500), xray.scatterer( #53 label="H9A", site=(-0.539908, 0.139753, -0.382281), u=0.007130), xray.scatterer( #54 label="H10B", site=(-1.265944, -0.029610, -0.212398), u=0.030910), xray.scatterer( #55 label="H3A", site=(-0.934728, -0.691149, -0.450551), u=0.038950), xray.scatterer( #56 label="H5A", site=(-0.833654, -0.487479, -0.508239), u=0.031150), xray.scatterer( #57 label="H6A", site=(-0.742871, -0.242269, -0.558157), u=0.050490), xray.scatterer( #58 label="H9B", site=(-1.120150, -0.093752, -0.090706), u=0.039310), xray.scatterer( #59 label="H11A", site=(-0.593074, 0.054973, -0.180370), u=0.055810), xray.scatterer( #60 label="H2A", site=(-0.999576, -0.842158, -0.340837), u=0.057030) ])) fo_sq = xs0.structure_factors(d_min=0.8).f_calc().norm() fo_sq = fo_sq.customized_copy(sigmas=flex.double(fo_sq.size(), 1.)) for hydrogen_flag in (True, False): xs = xs0.deep_copy_scatterers() if not hydrogen_flag: xs.select_inplace(~xs.element_selection('H')) xs.shake_adp() xs.shake_sites_in_place(rms_difference=0.1) for sc in xs.scatterers(): sc.flags.set_grad_site(True).set_grad_u_aniso(False) ls = least_squares.crystallographic_ls( fo_sq.as_xray_observations(), constraints.reparametrisation( structure=xs, constraints=[], connectivity_table=smtbx.utils.connectivity_table(xs)), weighting_scheme=least_squares.unit_weighting(), origin_fixing_restraints_type= origin_fixing_restraints.atomic_number_weighting) ls.build_up() lambdas = eigensystem.real_symmetric( ls.normal_matrix_packed_u().matrix_packed_u_as_symmetric()).values() # assert the restrained L.S. problem is not too ill-conditionned cond = math.log10(lambdas[0]/lambdas[-1]) msg = ("one heavy element + light elements (real data) %s Hydrogens: %.1f" % (['without', 'with'][hydrogen_flag], cond)) if verbose: print(msg) assert cond < worst_condition_number_acceptable, msg # are esd's for x,y,z coordinates of the same order of magnitude? var_cart = covariance.orthogonalize_covariance_matrix( ls.covariance_matrix(), xs.unit_cell(), xs.parameter_map()) var_site_cart = covariance.extract_covariance_matrix_for_sites( flex.size_t_range(len(xs.scatterers())), var_cart, xs.parameter_map()) site_esds = var_site_cart.matrix_packed_u_diagonal() indicators = flex.double() for i in xrange(0, len(site_esds), 3): stats = scitbx.math.basic_statistics(site_esds[i:i+3]) indicators.append(stats.bias_corrected_standard_deviation/stats.mean) assert indicators.all_lt(1)
def exercise_hl_ab_only(anomalous_flag): cs = crystal.symmetry(unit_cell=(3.95738, 5.1446, 6.72755, 83, 109, 129), space_group_symbol="P1") if (not anomalous_flag): i = [(-1, 0, 1), (-1, 1, 1), (0, -1, 1), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (1, -1, 0)] else: i = [(-1, 0, 1), (1, 0, -1), (-1, 1, 1), (1, -1, -1), (0, -1, 1), (0, 1, -1), (0, 0, 1), (0, 0, -1), (0, 0, 2), (0, 0, -2), (0, 1, 0), (0, -1, 0), (0, 1, 1), (0, -1, -1), (1, -1, 0), (-1, 1, 0)] ms = miller.set(crystal_symmetry=cs, indices=flex.miller_index(i), anomalous_flag=anomalous_flag) ma = ms.array(data=flex.size_t_range(ms.indices().size()).as_double() + 1) mtz_dataset = ma.as_mtz_dataset(column_root_label="HA") columns = mtz_dataset.columns() if (not anomalous_flag): assert columns.size() == 4 c = columns[3] assert c.label() == "HA" c.set_type("A") values = c.extract_values() selection_valid = c.selection_valid() c = mtz_dataset.add_column(label="HB", type="A") c.set_values(values=-values, selection_valid=selection_valid) else: assert columns.size() == 5 for i, l in [(3, "HA(+)"), (4, "HA(-)")]: c = columns[i] assert c.label() == l if (i == 4): c.set_label("HB(+)") c.set_type("A") for i, l in [(3, "HA(-)"), (4, "HB(-)")]: c = columns[i] values = c.extract_values() selection_valid = c.selection_valid() c = mtz_dataset.add_column(label=l, type="A") c.set_values(values=-values, selection_valid=selection_valid) mtz_obj = mtz_dataset.mtz_object() mas = mtz_obj.as_miller_arrays() assert len(mas) == 1 assert approx_equal(mas[0].indices(), ma.indices()) if (not anomalous_flag): assert approx_equal(mas[0].data(), [(1, -1, 0, 0), (2, -2, 0, 0), (3, -3, 0, 0), (4, -4, 0, 0), (5, -5, 0, 0), (6, -6, 0, 0), (7, -7, 0, 0), (8, -8, 0, 0)]) else: assert approx_equal(mas[0].data(), [(1, 2, 0, 0), (-1, -2, 0, 0), (3, 4, 0, 0), (-3, -4, 0, 0), (5, 6, 0, 0), (-5, -6, 0, 0), (7, 8, 0, 0), (-7, -8, 0, 0), (9, 10, 0, 0), (-9, -10, 0, 0), (11, 12, 0, 0), (-11, -12, 0, 0), (13, 14, 0, 0), (-13, -14, 0, 0), (15, 16, 0, 0), (-15, -16, 0, 0)]) # columns = mtz_dataset.columns() columns[-1].set_type("F") try: mtz_obj.as_miller_arrays() except RuntimeError as e: if (not anomalous_flag): assert str(e) == 'Invalid MTZ column combination' \ ' (incomplete Hendrickson-Lattman array),' \ ' column labels: "HA", "HB" column types: "A", "F"' else: assert str(e) == 'Invalid MTZ column combination' \ ' (incomplete Hendrickson-Lattman array),' \ ' column labels: "HA(-)", "HB(-)" column types: "A", "F"' else: raise Exception_expected
def exercise_affine_occupancy_parameter(): xs = xray.structure( crystal_symmetry=crystal.symmetry(unit_cell=(), space_group_symbol='hall: P 1'), scatterers=flex.xray_scatterer(( xray.scatterer('C0', occupancy=1), xray.scatterer('C1', occupancy=1), xray.scatterer('C2', occupancy=1), xray.scatterer('C3', occupancy=1), ))) sc = xs.scatterers() sc.flags_set_grad_occupancy(flex.size_t_range(4)) # Two occupancies adding up to 1 (most common case of disorder) r = constraints.ext.reparametrisation(xs.unit_cell()) occ_1 = r.add(constraints.independent_occupancy_parameter, sc[1]) occ_3 = r.add(constraints.affine_asu_occupancy_parameter, dependee=occ_1, a=-1, b=1, scatterer=sc[3]) r.finalise() r.linearise() assert approx_equal(occ_1.value, 1) assert approx_equal(occ_3.value, 0) jt0 = sparse.matrix(1, 2, [ {0:1}, # 1st col = derivatives of occ_1 {0:-1}, # 2nd col = derivatives of occ_3 ]) assert sparse.approx_equal(tolerance=1e-15)(r.jacobian_transpose, jt0) # Example illustrating the instruction SUMP in SHELX 97 manual (p. 7-26) # We disregard the issue of the special position which is orthogonal to the # point we want to test here. xs = xray.structure( crystal_symmetry=crystal.symmetry(unit_cell=(), space_group_symbol='hall: P 1'), scatterers=flex.xray_scatterer(( xray.scatterer('Na+', occupancy=1), xray.scatterer('Ca2+', occupancy=1), xray.scatterer('Al3+', occupancy=0.35), xray.scatterer('K+', occupancy=0.15), ))) sc = xs.scatterers() sc.flags_set_grad_occupancy(flex.size_t_range(4)) # The constraints are: # fully occupied: occ(Na+) + occ(Ca2+) + occ(Al3+) + occ(K+) = 1 # average charge +2: occ(Na+) + 2 occ(Ca2+) + 3 occ(Al3+) + occ(K+) = +2 # This can be solved as: # occ(Na+) = occ(Al3+) - occ(K+) # occ(Ca2+) = 1 - 2 occ(Al3+) r = constraints.ext.reparametrisation(xs.unit_cell()) occ_Al = r.add(constraints.independent_occupancy_parameter, sc[2]) occ_K = r.add(constraints.independent_occupancy_parameter, sc[3]) occ_Na = r.add(constraints.affine_asu_occupancy_parameter, occ_Al, 1, occ_K, -1, 0, scatterer=sc[0]) occ_Ca = r.add(constraints.affine_asu_occupancy_parameter, occ_Al, -2, 1, scatterer=sc[1]) r.finalise() r.linearise() assert approx_equal(occ_Na.value, 0.2) assert approx_equal(occ_Ca.value, 0.3) assert approx_equal(occ_Al.value, 0.35) assert approx_equal(occ_K.value, 0.15) jt0 = sparse.matrix(2, 4, [ {0:1}, # diff occ(Al3+) {1:1} , # diff occ(K+) {0:1, 1:-1}, # diff occ(Na+) {0:-2}, # diff occ(Ca2+) ]) assert sparse.approx_equal(tolerance=1e-15)(r.jacobian_transpose, jt0)
def exercise_hl_ab_only(anomalous_flag): cs = crystal.symmetry(unit_cell=(3.95738, 5.1446, 6.72755, 83, 109, 129), space_group_symbol="P1") if not anomalous_flag: i = [(-1, 0, 1), (-1, 1, 1), (0, -1, 1), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (1, -1, 0)] else: i = [ (-1, 0, 1), (1, 0, -1), (-1, 1, 1), (1, -1, -1), (0, -1, 1), (0, 1, -1), (0, 0, 1), (0, 0, -1), (0, 0, 2), (0, 0, -2), (0, 1, 0), (0, -1, 0), (0, 1, 1), (0, -1, -1), (1, -1, 0), (-1, 1, 0), ] ms = miller.set(crystal_symmetry=cs, indices=flex.miller_index(i), anomalous_flag=anomalous_flag) ma = ms.array(data=flex.size_t_range(ms.indices().size()).as_double() + 1) mtz_dataset = ma.as_mtz_dataset(column_root_label="HA") columns = mtz_dataset.columns() if not anomalous_flag: assert columns.size() == 4 c = columns[3] assert c.label() == "HA" c.set_type("A") values = c.extract_values() selection_valid = c.selection_valid() c = mtz_dataset.add_column(label="HB", type="A") c.set_values(values=-values, selection_valid=selection_valid) else: assert columns.size() == 5 for i, l in [(3, "HA(+)"), (4, "HA(-)")]: c = columns[i] assert c.label() == l if i == 4: c.set_label("HB(+)") c.set_type("A") for i, l in [(3, "HA(-)"), (4, "HB(-)")]: c = columns[i] values = c.extract_values() selection_valid = c.selection_valid() c = mtz_dataset.add_column(label=l, type="A") c.set_values(values=-values, selection_valid=selection_valid) mtz_obj = mtz_dataset.mtz_object() mas = mtz_obj.as_miller_arrays() assert len(mas) == 1 assert approx_equal(mas[0].indices(), ma.indices()) if not anomalous_flag: assert approx_equal( mas[0].data(), [ (1, -1, 0, 0), (2, -2, 0, 0), (3, -3, 0, 0), (4, -4, 0, 0), (5, -5, 0, 0), (6, -6, 0, 0), (7, -7, 0, 0), (8, -8, 0, 0), ], ) else: assert approx_equal( mas[0].data(), [ (1, 2, 0, 0), (-1, -2, 0, 0), (3, 4, 0, 0), (-3, -4, 0, 0), (5, 6, 0, 0), (-5, -6, 0, 0), (7, 8, 0, 0), (-7, -8, 0, 0), (9, 10, 0, 0), (-9, -10, 0, 0), (11, 12, 0, 0), (-11, -12, 0, 0), (13, 14, 0, 0), (-13, -14, 0, 0), (15, 16, 0, 0), (-15, -16, 0, 0), ], ) # columns = mtz_dataset.columns() columns[-1].set_type("F") try: mtz_obj.as_miller_arrays() except RuntimeError, e: if not anomalous_flag: assert ( str(e) == "Invalid MTZ column combination" " (incomplete Hendrickson-Lattman array)," ' column labels: "HA", "HB" column types: "A", "F"' ) else: assert ( str(e) == "Invalid MTZ column combination" " (incomplete Hendrickson-Lattman array)," ' column labels: "HA(-)", "HB(-)" column types: "A", "F"' )
def exercise_floating_origin_dynamic_weighting(verbose=False): from cctbx import covariance import scitbx.math worst_condition_number_acceptable = 10 # light elements only xs0 = random_structure.xray_structure(elements=['C', 'C', 'C', 'O', 'N'], use_u_aniso=True) fo_sq = xs0.structure_factors(d_min=0.8).f_calc().norm() fo_sq = fo_sq.customized_copy(sigmas=flex.double(fo_sq.size(), 1.)) xs = xs0.deep_copy_scatterers() xs.shake_adp() xs.shake_sites_in_place(rms_difference=0.1) for sc in xs.scatterers(): sc.flags.set_grad_site(True).set_grad_u_aniso(True) ls = least_squares.crystallographic_ls( fo_sq.as_xray_observations(), constraints.reparametrisation( structure=xs, constraints=[], connectivity_table=smtbx.utils.connectivity_table(xs)), weighting_scheme=least_squares.unit_weighting(), origin_fixing_restraints_type= origin_fixing_restraints.atomic_number_weighting) ls.build_up() lambdas = eigensystem.real_symmetric( ls.normal_matrix_packed_u().matrix_packed_u_as_symmetric()).values() # assert the restrained L.S. problem is not too ill-conditionned cond = math.log10(lambdas[0]/lambdas[-1]) msg = "light elements: %.1f" % cond if verbose: print msg assert cond < worst_condition_number_acceptable, msg # one heavy element xs0 = random_structure.xray_structure( space_group_info=sgtbx.space_group_info('hall: P 2yb'), elements=['Zn', 'C', 'C', 'C', 'O', 'N'], use_u_aniso=True) fo_sq = xs0.structure_factors(d_min=0.8).f_calc().norm() fo_sq = fo_sq.customized_copy(sigmas=flex.double(fo_sq.size(), 1.)) xs = xs0.deep_copy_scatterers() xs.shake_adp() xs.shake_sites_in_place(rms_difference=0.1) for sc in xs.scatterers(): sc.flags.set_grad_site(True).set_grad_u_aniso(True) ls = least_squares.crystallographic_ls( fo_sq.as_xray_observations(), constraints.reparametrisation( structure=xs, constraints=[], connectivity_table=smtbx.utils.connectivity_table(xs)), weighting_scheme=least_squares.mainstream_shelx_weighting(), origin_fixing_restraints_type= origin_fixing_restraints.atomic_number_weighting) ls.build_up() lambdas = eigensystem.real_symmetric( ls.normal_matrix_packed_u().matrix_packed_u_as_symmetric()).values() # assert the restrained L.S. problem is not too ill-conditionned cond = math.log10(lambdas[0]/lambdas[-1]) msg = "one heavy element + light elements (synthetic data): %.1f" % cond if verbose: print msg assert cond < worst_condition_number_acceptable, msg # are esd's for x,y,z coordinates of the same order of magnitude? var_cart = covariance.orthogonalize_covariance_matrix( ls.covariance_matrix(), xs.unit_cell(), xs.parameter_map()) var_site_cart = covariance.extract_covariance_matrix_for_sites( flex.size_t_range(len(xs.scatterers())), var_cart, xs.parameter_map()) site_esds = var_site_cart.matrix_packed_u_diagonal() indicators = flex.double() for i in xrange(0, len(site_esds), 3): stats = scitbx.math.basic_statistics(site_esds[i:i+3]) indicators.append(stats.bias_corrected_standard_deviation/stats.mean) assert indicators.all_lt(1) # especially troublesome structure with one heavy element # (contributed by Jonathan Coome) xs0 = xray.structure( crystal_symmetry=crystal.symmetry( unit_cell=(8.4519, 8.4632, 18.7887, 90, 96.921, 90), space_group_symbol="hall: P 2yb"), scatterers=flex.xray_scatterer([ xray.scatterer( #0 label="ZN1", site=(-0.736683, -0.313978, -0.246902), u=(0.000302, 0.000323, 0.000054, 0.000011, 0.000015, -0.000004)), xray.scatterer( #1 label="N3B", site=(-0.721014, -0.313583, -0.134277), u=(0.000268, 0.000237, 0.000055, -0.000027, 0.000005, 0.000006)), xray.scatterer( #2 label="N3A", site=(-0.733619, -0.290423, -0.357921), u=(0.000229, 0.000313, 0.000053, 0.000022, 0.000018, -0.000018)), xray.scatterer( #3 label="C9B", site=(-1.101537, -0.120157, -0.138063), u=(0.000315, 0.000345, 0.000103, 0.000050, 0.000055, -0.000017)), xray.scatterer( #4 label="N5B", site=(-0.962032, -0.220345, -0.222045), u=(0.000274, 0.000392, 0.000060, -0.000011, -0.000001, -0.000002)), xray.scatterer( #5 label="N1B", site=(-0.498153, -0.402742, -0.208698), u=(0.000252, 0.000306, 0.000063, 0.000000, 0.000007, 0.000018)), xray.scatterer( #6 label="C3B", site=(-0.322492, -0.472610, -0.114594), u=(0.000302, 0.000331, 0.000085, 0.000016, -0.000013, 0.000037)), xray.scatterer( #7 label="C4B", site=(-0.591851, -0.368163, -0.094677), u=(0.000262, 0.000255, 0.000073, -0.000034, 0.000027, -0.000004)), xray.scatterer( #8 label="N4B", site=(-0.969383, -0.204624, -0.150014), u=(0.000279, 0.000259, 0.000070, -0.000009, 0.000039, 0.000000)), xray.scatterer( #9 label="N2B", site=(-0.470538, -0.414572, -0.135526), u=(0.000277, 0.000282, 0.000065, 0.000003, 0.000021, -0.000006)), xray.scatterer( #10 label="C8A", site=(-0.679889, -0.158646, -0.385629), u=(0.000209, 0.000290, 0.000078, 0.000060, 0.000006, 0.000016)), xray.scatterer( #11 label="N5A", site=(-0.649210, -0.075518, -0.263412), u=(0.000307, 0.000335, 0.000057, -0.000002, 0.000016, -0.000012)), xray.scatterer( #12 label="C6B", site=(-0.708620, -0.325965, 0.011657), u=(0.000503, 0.000318, 0.000053, -0.000058, 0.000032, -0.000019)), xray.scatterer( #13 label="C10B", site=(-1.179332, -0.083184, -0.202815), u=(0.000280, 0.000424, 0.000136, 0.000094, 0.000006, 0.000013)), xray.scatterer( #14 label="N1A", site=(-0.838363, -0.532191, -0.293213), u=(0.000312, 0.000323, 0.000060, 0.000018, 0.000011, -0.000008)), xray.scatterer( #15 label="C3A", site=(-0.915414, -0.671031, -0.393826), u=(0.000319, 0.000384, 0.000078, -0.000052, -0.000001, -0.000020)), xray.scatterer( #16 label="C1A", site=(-0.907466, -0.665419, -0.276011), u=(0.000371, 0.000315, 0.000079, 0.000006, 0.000036, 0.000033)), xray.scatterer( #17 label="C1B", site=(-0.365085, -0.452753, -0.231927), u=(0.000321, 0.000253, 0.000087, -0.000024, 0.000047, -0.000034)), xray.scatterer( #18 label="C11A", site=(-0.598622, 0.053343, -0.227354), u=(0.000265, 0.000409, 0.000084, 0.000088, -0.000018, -0.000030)), xray.scatterer( #19 label="C2A", site=(-0.958694, -0.755645, -0.337016), u=(0.000394, 0.000350, 0.000106, -0.000057, 0.000027, -0.000005)), xray.scatterer( #20 label="C4A", site=(-0.784860, -0.407601, -0.402050), u=(0.000238, 0.000296, 0.000064, 0.000002, 0.000011, -0.000016)), xray.scatterer( #21 label="C5A", site=(-0.784185, -0.399716, -0.475491), u=(0.000310, 0.000364, 0.000062, 0.000044, -0.000011, -0.000017)), xray.scatterer( #22 label="N4A", site=(-0.630284, -0.043981, -0.333143), u=(0.000290, 0.000275, 0.000074, 0.000021, 0.000027, 0.000013)), xray.scatterer( #23 label="C10A", site=(-0.545465, 0.166922, -0.272829), u=(0.000369, 0.000253, 0.000117, 0.000015, -0.000002, -0.000008)), xray.scatterer( #24 label="C9A", site=(-0.567548, 0.102272, -0.339923), u=(0.000346, 0.000335, 0.000103, -0.000016, 0.000037, 0.000023)), xray.scatterer( #25 label="C11B", site=(-1.089943, -0.146930, -0.253779), u=(0.000262, 0.000422, 0.000102, -0.000018, -0.000002, 0.000029)), xray.scatterer( #26 label="N2A", site=(-0.843385, -0.537780, -0.366515), u=(0.000273, 0.000309, 0.000055, -0.000012, -0.000005, -0.000018)), xray.scatterer( #27 label="C7A", site=(-0.674021, -0.136086, -0.457790), u=(0.000362, 0.000378, 0.000074, 0.000043, 0.000034, 0.000016)), xray.scatterer( #28 label="C8B", site=(-0.843625, -0.264182, -0.102023), u=(0.000264, 0.000275, 0.000072, -0.000025, 0.000019, -0.000005)), xray.scatterer( #29 label="C6A", site=(-0.726731, -0.261702, -0.502366), u=(0.000339, 0.000472, 0.000064, 0.000062, -0.000003, 0.000028)), xray.scatterer( #30 label="C5B", site=(-0.577197, -0.376753, -0.020800), u=(0.000349, 0.000353, 0.000066, -0.000082, -0.000022, 0.000014)), xray.scatterer( #31 label="C2B", site=(-0.252088, -0.497338, -0.175057), u=(0.000251, 0.000342, 0.000119, 0.000020, 0.000034, -0.000018)), xray.scatterer( #32 label="C7B", site=(-0.843956, -0.268811, -0.028080), u=(0.000344, 0.000377, 0.000078, -0.000029, 0.000059, -0.000007)), xray.scatterer( #33 label="F4B", site=(-0.680814, -0.696808, -0.115056), u=(0.000670, 0.000408, 0.000109, -0.000099, 0.000139, -0.000031)), xray.scatterer( #34 label="F1B", site=(-0.780326, -0.921249, -0.073962), u=(0.000687, 0.000357, 0.000128, -0.000152, -0.000011, 0.000021)), xray.scatterer( #35 label="B1B", site=(-0.795220, -0.758128, -0.075955), u=(0.000413, 0.000418, 0.000075, 0.000054, 0.000045, 0.000023)), xray.scatterer( #36 label="F2B", site=(-0.945140, -0.714626, -0.105820), u=(0.000584, 0.001371, 0.000108, 0.000420, 0.000067, 0.000134)), xray.scatterer( #37 label="F3B", site=(-0.768914, -0.701660, -0.005161), u=(0.000678, 0.000544, 0.000079, -0.000000, 0.000090, -0.000021)), xray.scatterer( #38 label="F1A", site=(-0.109283, -0.252334, -0.429288), u=(0.000427, 0.001704, 0.000125, 0.000407, 0.000041, 0.000035)), xray.scatterer( #39 label="F4A", site=(-0.341552, -0.262864, -0.502023), u=(0.000640, 0.000557, 0.000081, -0.000074, 0.000042, -0.000052)), xray.scatterer( #40 label="F3A", site=(-0.324533, -0.142292, -0.393215), u=(0.000471, 0.001203, 0.000134, 0.000333, -0.000057, -0.000220)), xray.scatterer( #41 label="F2A", site=(-0.312838, -0.405405, -0.400231), u=(0.002822, 0.000831, 0.000092, -0.000648, 0.000115, 0.000027)), xray.scatterer( #42 label="B1A", site=(-0.271589, -0.268874, -0.430724), u=(0.000643, 0.000443, 0.000079, 0.000040, 0.000052, -0.000034)), xray.scatterer( #43 label="H5B", site=(-0.475808, -0.413802, 0.004402), u=0.005270), xray.scatterer( #44 label="H6B", site=(-0.699519, -0.326233, 0.062781), u=0.019940), xray.scatterer( #45 label="H3B", site=(-0.283410, -0.484757, -0.063922), u=0.029990), xray.scatterer( #46 label="H1B", site=(-0.357103, -0.451819, -0.284911), u=0.031070), xray.scatterer( #47 label="H10A", site=(-0.495517, 0.268296, -0.256187), u=0.027610), xray.scatterer( #48 label="H2B", site=(-0.147129, -0.535141, -0.174699), u=0.017930), xray.scatterer( #49 label="H7A", site=(-0.643658, -0.031387, -0.475357), u=0.020200), xray.scatterer( #50 label="H1A", site=(-0.912757, -0.691043, -0.227554), u=0.033320), xray.scatterer( #51 label="H7B", site=(-0.933670, -0.241189, -0.010263), u=0.021310), xray.scatterer( #52 label="H11B", site=(-1.107736, -0.155470, -0.311996), u=0.041500), xray.scatterer( #53 label="H9A", site=(-0.539908, 0.139753, -0.382281), u=0.007130), xray.scatterer( #54 label="H10B", site=(-1.265944, -0.029610, -0.212398), u=0.030910), xray.scatterer( #55 label="H3A", site=(-0.934728, -0.691149, -0.450551), u=0.038950), xray.scatterer( #56 label="H5A", site=(-0.833654, -0.487479, -0.508239), u=0.031150), xray.scatterer( #57 label="H6A", site=(-0.742871, -0.242269, -0.558157), u=0.050490), xray.scatterer( #58 label="H9B", site=(-1.120150, -0.093752, -0.090706), u=0.039310), xray.scatterer( #59 label="H11A", site=(-0.593074, 0.054973, -0.180370), u=0.055810), xray.scatterer( #60 label="H2A", site=(-0.999576, -0.842158, -0.340837), u=0.057030) ])) fo_sq = xs0.structure_factors(d_min=0.8).f_calc().norm() fo_sq = fo_sq.customized_copy(sigmas=flex.double(fo_sq.size(), 1.)) for hydrogen_flag in (True, False): xs = xs0.deep_copy_scatterers() if not hydrogen_flag: xs.select_inplace(~xs.element_selection('H')) xs.shake_adp() xs.shake_sites_in_place(rms_difference=0.1) for sc in xs.scatterers(): sc.flags.set_grad_site(True).set_grad_u_aniso(False) ls = least_squares.crystallographic_ls( fo_sq.as_xray_observations(), constraints.reparametrisation( structure=xs, constraints=[], connectivity_table=smtbx.utils.connectivity_table(xs)), weighting_scheme=least_squares.unit_weighting(), origin_fixing_restraints_type= origin_fixing_restraints.atomic_number_weighting) ls.build_up() lambdas = eigensystem.real_symmetric( ls.normal_matrix_packed_u().matrix_packed_u_as_symmetric()).values() # assert the restrained L.S. problem is not too ill-conditionned cond = math.log10(lambdas[0]/lambdas[-1]) msg = ("one heavy element + light elements (real data) %s Hydrogens: %.1f" % (['without', 'with'][hydrogen_flag], cond)) if verbose: print msg assert cond < worst_condition_number_acceptable, msg # are esd's for x,y,z coordinates of the same order of magnitude? var_cart = covariance.orthogonalize_covariance_matrix( ls.covariance_matrix(), xs.unit_cell(), xs.parameter_map()) var_site_cart = covariance.extract_covariance_matrix_for_sites( flex.size_t_range(len(xs.scatterers())), var_cart, xs.parameter_map()) site_esds = var_site_cart.matrix_packed_u_diagonal() indicators = flex.double() for i in xrange(0, len(site_esds), 3): stats = scitbx.math.basic_statistics(site_esds[i:i+3]) indicators.append(stats.bias_corrected_standard_deviation/stats.mean) assert indicators.all_lt(1)
def exercise(verbose=0): distance_ideal = 1.8 default_vdw_distance = 3.6 vdw_1_4_factor = 3.5/3.6 sites_cart_manual = flex.vec3_double([ (1,3,0), (2,3,0), (3,2,0), (3,1,0), (4,1,0), (3,4,0), (4,3,0), (5,3,0), (6,2,0), (7,2,0), (8,3,0), (7,4,0), (6,4,0), (7,5,0), (6,6,0), (8,6,0)]) bond_proxies = geometry_restraints.bond_sorted_asu_proxies(asu_mappings=None) for i_seqs in [(0,1),(1,2),(2,3),(3,4),(1,5),(2,6),(5,6), (6,7),(7,8),(8,9),(9,10),(10,11),(11,12), (12,7),(11,13),(13,14),(14,15),(15,13)]: bond_proxies.process(geometry_restraints.bond_simple_proxy( i_seqs=i_seqs, distance_ideal=distance_ideal, weight=100)) angle_proxies = geometry_restraints.shared_angle_proxy() for i_seqs,angle_ideal in [[(0,1,2),135], [(0,1,5),135], [(1,2,3),135], [(3,2,6),135], [(2,3,4),120], [(1,2,6),90], [(2,6,5),90], [(6,5,1),90], [(5,1,2),90], [(2,6,7),135], [(5,6,7),135], [(6,7,8),120], [(6,7,12),120], [(7,8,9),120], [(8,9,10),120], [(9,10,11),120], [(10,11,12),120], [(11,12,7),120], [(12,7,8),120], [(10,11,13),120], [(12,11,13),120], [(11,13,15),150], [(11,13,14),150], [(13,15,14),60], [(15,14,13),60], [(14,13,15),60]]: angle_proxies.append(geometry_restraints.angle_proxy( i_seqs=i_seqs, angle_ideal=angle_ideal, weight=1)) if (0 or verbose): dump_pdb(file_name="manual.pdb", sites_cart=sites_cart_manual) for traditional_convergence_test in [True,False]: for sites_cart_selection in [True, False]: sites_cart = sites_cart_manual.deep_copy() if sites_cart_selection: sites_cart_selection = flex.bool(sites_cart.size(), True) sites_cart_selection[1] = False assert bond_proxies.asu.size() == 0 bond_params_table = geometry_restraints.extract_bond_params( n_seq=sites_cart.size(), bond_simple_proxies=bond_proxies.simple) manager = geometry_restraints.manager.manager( bond_params_table=bond_params_table, angle_proxies=angle_proxies) minimized = geometry_restraints.lbfgs.lbfgs( sites_cart=sites_cart, geometry_restraints_manager=manager, lbfgs_termination_params=scitbx.lbfgs.termination_parameters( traditional_convergence_test=traditional_convergence_test, drop_convergence_test_max_drop_eps=1.e-20, drop_convergence_test_iteration_coefficient=1, max_iterations=1000), sites_cart_selection=sites_cart_selection, ) assert minimized.minimizer.iter() > 100 sites_cart_minimized_1 = sites_cart.deep_copy() if (0 or verbose): dump_pdb( file_name="minimized_1.pdb", sites_cart=sites_cart_minimized_1) bond_deltas = geometry_restraints.bond_deltas( sites_cart=sites_cart_minimized_1, proxies=bond_proxies.simple) angle_deltas = geometry_restraints.angle_deltas( sites_cart=sites_cart_minimized_1, proxies=angle_proxies) if (0 or verbose): for proxy,delta in zip(bond_proxies.simple, bond_deltas): print "bond:", proxy.i_seqs, delta for proxy,delta in zip(angle_proxies, angle_deltas): print "angle:", proxy.i_seqs, delta assert is_below_limit( value=flex.max(flex.abs(bond_deltas)), limit=0, eps=1.e-6) assert is_below_limit( value=flex.max(flex.abs(angle_deltas)), limit=0, eps=2.e-6) sites_cart += matrix.col((1,1,0)) - matrix.col(sites_cart.min()) unit_cell_lengths = list( matrix.col(sites_cart.max()) + matrix.col((1,-1.2,4))) unit_cell_lengths[1] *= 2 unit_cell_lengths[2] *= 2 xray_structure = xray.structure( crystal_symmetry=crystal.symmetry( unit_cell=unit_cell_lengths, space_group_symbol="P112")) for serial,site in zip(count(1), sites_cart): xray_structure.add_scatterer(xray.scatterer( label="C%02d"%serial, site=xray_structure.unit_cell().fractionalize(site))) if (0 or verbose): xray_structure.show_summary().show_scatterers() p1_structure = (xray_structure .apply_shift((-.5,-.5,0)) .expand_to_p1() .apply_shift((.5,.5,0))) for shift in [(1,0,0), (0,1,0), (0,0,1)]: p1_structure.add_scatterers(p1_structure.apply_shift(shift).scatterers()) if (0 or verbose): open("p1_structure.pdb", "w").write(p1_structure.as_pdb_file()) nonbonded_cutoff = 6.5 asu_mappings = xray_structure.asu_mappings( buffer_thickness=nonbonded_cutoff) bond_asu_table = crystal.pair_asu_table(asu_mappings=asu_mappings) geometry_restraints.add_pairs(bond_asu_table, bond_proxies.simple) shell_asu_tables = crystal.coordination_sequences.shell_asu_tables( pair_asu_table=bond_asu_table, max_shell=3) shell_sym_tables = [shell_asu_table.extract_pair_sym_table() for shell_asu_table in shell_asu_tables] bond_params_table = geometry_restraints.extract_bond_params( n_seq=sites_cart.size(), bond_simple_proxies=bond_proxies.simple) atom_energy_types = flex.std_string(sites_cart.size(), "Default") nonbonded_params = geometry_restraints.nonbonded_params( factor_1_4_interactions=vdw_1_4_factor, const_shrink_1_4_interactions=0, default_distance=default_vdw_distance) nonbonded_params.distance_table.setdefault( "Default")["Default"] = default_vdw_distance pair_proxies = geometry_restraints.pair_proxies( bond_params_table=bond_params_table, shell_asu_tables=shell_asu_tables, model_indices=None, conformer_indices=None, nonbonded_params=nonbonded_params, nonbonded_types=atom_energy_types, nonbonded_distance_cutoff_plus_buffer=nonbonded_cutoff) if (0 or verbose): print "pair_proxies.bond_proxies.n_total():", \ pair_proxies.bond_proxies.n_total(), print "simple:", pair_proxies.bond_proxies.simple.size(), print "sym:", pair_proxies.bond_proxies.asu.size() print "pair_proxies.nonbonded_proxies.n_total():", \ pair_proxies.nonbonded_proxies.n_total(), print "simple:", pair_proxies.nonbonded_proxies.simple.size(), print "sym:", pair_proxies.nonbonded_proxies.asu.size() print "min_distance_nonbonded: %.2f" % flex.min( geometry_restraints.nonbonded_deltas( sites_cart=sites_cart, sorted_asu_proxies=pair_proxies.nonbonded_proxies)) s = StringIO() pair_proxies.bond_proxies.show_histogram_of_model_distances( sites_cart=sites_cart, f=s, prefix="[]") assert s.getvalue().splitlines()[0] == "[]Histogram of bond lengths:" assert s.getvalue().splitlines()[5].startswith("[] 1.80 - 1.80:") s = StringIO() pair_proxies.bond_proxies.show_histogram_of_deltas( sites_cart=sites_cart, f=s, prefix="][") assert s.getvalue().splitlines()[0] == "][Histogram of bond deltas:" assert s.getvalue().splitlines()[5].startswith("][ 0.000 - 0.000:") s = StringIO() pair_proxies.bond_proxies.show_sorted( by_value="residual", sites_cart=sites_cart, max_items=3, f=s, prefix=":;") l = s.getvalue().splitlines() assert l[0] == ":;Bond restraints: 18" assert l[1] == ":;Sorted by residual:" assert l[2].startswith(":;bond ") assert l[3].startswith(":; ") assert l[4] == ":; ideal model delta sigma weight residual" for i in [5,-2]: assert l[i].startswith(":; 1.800 1.800 ") assert l[-1] == ":;... (remaining 15 not shown)" s = StringIO() pair_proxies.nonbonded_proxies.show_histogram_of_model_distances( sites_cart=sites_cart, f=s, prefix="]^") assert not show_diff(s.getvalue(), """\ ]^Histogram of nonbonded interaction distances: ]^ 2.16 - 3.03: 3 ]^ 3.03 - 3.89: 12 ]^ 3.89 - 4.75: 28 ]^ 4.75 - 5.61: 44 ]^ 5.61 - 6.48: 54 """) s = StringIO() pair_proxies.nonbonded_proxies.show_sorted( by_value="delta", sites_cart=sites_cart, max_items=7, f=s, prefix=">,") assert not show_diff(s.getvalue(), """\ >,Nonbonded interactions: 141 >,Sorted by model distance: >,nonbonded 15 >, 15 >, model vdw sym.op. >, 2.164 3.600 -x+2,-y+1,z ... >,nonbonded 4 >, 8 >, model vdw >, 3.414 3.600 >,... (remaining 134 not shown) """, selections=[range(6), range(-5,0)]) vdw_1_sticks = [] vdw_2_sticks = [] for proxy in pair_proxies.nonbonded_proxies.simple: if (proxy.vdw_distance == default_vdw_distance): vdw_1_sticks.append(pml_stick( begin=sites_cart[proxy.i_seqs[0]], end=sites_cart[proxy.i_seqs[1]])) else: vdw_2_sticks.append(pml_stick( begin=sites_cart[proxy.i_seqs[0]], end=sites_cart[proxy.i_seqs[1]])) mps = asu_mappings.mappings() for proxy in pair_proxies.nonbonded_proxies.asu: if (proxy.vdw_distance == default_vdw_distance): vdw_1_sticks.append(pml_stick( begin=mps[proxy.i_seq][0].mapped_site(), end=mps[proxy.j_seq][proxy.j_sym].mapped_site())) else: vdw_2_sticks.append(pml_stick( begin=mps[proxy.i_seq][0].mapped_site(), end=mps[proxy.j_seq][proxy.j_sym].mapped_site())) if (0 or verbose): pml_write(f=open("vdw_1.pml", "w"), label="vdw_1", sticks=vdw_1_sticks) pml_write(f=open("vdw_2.pml", "w"), label="vdw_2", sticks=vdw_2_sticks) # i_pdb = count(2) for use_crystal_symmetry in [False, True]: if (not use_crystal_symmetry): crystal_symmetry = None site_symmetry_table = None else: crystal_symmetry = xray_structure site_symmetry_table = xray_structure.site_symmetry_table() for sites_cart in [sites_cart_manual.deep_copy(), sites_cart_minimized_1.deep_copy()]: manager = geometry_restraints.manager.manager( crystal_symmetry=crystal_symmetry, site_symmetry_table=site_symmetry_table, nonbonded_params=nonbonded_params, nonbonded_types=atom_energy_types, nonbonded_function=geometry_restraints.prolsq_repulsion_function(), bond_params_table=bond_params_table, shell_sym_tables=shell_sym_tables, nonbonded_distance_cutoff=nonbonded_cutoff, nonbonded_buffer=1, angle_proxies=angle_proxies, plain_pairs_radius=5) manager = manager.select(selection=flex.bool(sites_cart.size(), True)) manager = manager.select( iselection=flex.size_t_range(stop=sites_cart.size())) pair_proxies = manager.pair_proxies(sites_cart=sites_cart) minimized = geometry_restraints.lbfgs.lbfgs( sites_cart=sites_cart, geometry_restraints_manager=manager, lbfgs_termination_params=scitbx.lbfgs.termination_parameters( max_iterations=1000)) if (0 or verbose): minimized.final_target_result.show() print "number of function evaluations:", minimized.minimizer.nfun() print "n_updates_pair_proxies:", manager.n_updates_pair_proxies if (not use_crystal_symmetry): assert minimized.final_target_result.bond_residual_sum < 1.e-3 assert minimized.final_target_result.nonbonded_residual_sum < 0.1 else: assert minimized.final_target_result.bond_residual_sum < 1.e-2 assert minimized.final_target_result.nonbonded_residual_sum < 0.1 assert minimized.final_target_result.angle_residual_sum < 1.e-3 if (0 or verbose): pdb_file_name = "minimized_%d.pdb" % i_pdb.next() print "Writing file:", pdb_file_name dump_pdb(file_name=pdb_file_name, sites_cart=sites_cart) if (manager.site_symmetry_table is None): additional_site_symmetry_table = None else: additional_site_symmetry_table = sgtbx.site_symmetry_table() assert manager.new_including_isolated_sites( n_additional_sites=0, site_symmetry_table=additional_site_symmetry_table, nonbonded_types=flex.std_string()).plain_pairs_radius \ == manager.plain_pairs_radius if (crystal_symmetry is not None): assert len(manager.plain_pair_sym_table) == 16 if (0 or verbose): manager.plain_pair_sym_table.show() # xray_structure.set_u_iso(values=flex.double([ 0.77599982480241358, 0.38745781137212021, 0.20667558236418682, 0.99759840171302094, 0.8917287406687805, 0.64780251325379845, 0.24878590382983534, 0.59480621182194615, 0.58695637792905142, 0.33997130213653637, 0.51258699130743735, 0.79760289141276675, 0.39996577657875021, 0.4329328819341467, 0.70422156561726479, 0.87260110626999332])) class parameters: pass parameters.sphere_radius = 5 parameters.distance_power = 0.7 parameters.average_power = 0.9 parameters.wilson_b_weight = 1.3952 parameters.wilson_b_weight_auto = False adp_energies = adp_restraints.energies_iso( geometry_restraints_manager=manager, xray_structure=xray_structure, parameters=parameters, wilson_b=None, use_hd=False, use_u_local_only = False, compute_gradients=False, gradients=None, normalization=False, collect=True) assert adp_energies.number_of_restraints == 69 assert approx_equal(adp_energies.residual_sum, 6.24865382467) assert adp_energies.gradients is None assert adp_energies.u_i.size() == adp_energies.number_of_restraints assert adp_energies.u_j.size() == adp_energies.number_of_restraints assert adp_energies.r_ij.size() == adp_energies.number_of_restraints for wilson_b in [None, 10, 100]: finite_difference_gradients = flex.double() eps = 1.e-6 for i_scatterer in xrange(xray_structure.scatterers().size()): rs = [] for signed_eps in [eps, -eps]: xray_structure_eps = xray_structure.deep_copy_scatterers() xray_structure_eps.scatterers()[i_scatterer].u_iso += signed_eps adp_energies = adp_restraints.energies_iso( geometry_restraints_manager=manager, xray_structure=xray_structure_eps, parameters=parameters, wilson_b=wilson_b, use_u_local_only = False, use_hd=False, compute_gradients=True, gradients=None, normalization=False, collect=False) rs.append(adp_energies.residual_sum) assert adp_energies.gradients.size() \ == xray_structure.scatterers().size() assert adp_energies.u_i == None assert adp_energies.u_j == None assert adp_energies.r_ij == None finite_difference_gradients.append((rs[0]-rs[1])/(2*eps)) sel = flex.bool(xray_structure.scatterers().size(), True) xray_structure.scatterers().flags_set_grad_u_iso(sel.iselection()) adp_energies = adp_restraints.energies_iso( geometry_restraints_manager=manager, xray_structure=xray_structure, parameters=parameters, wilson_b=wilson_b, use_u_local_only = False, use_hd=False, compute_gradients=True, gradients=None, normalization=False, collect=False) assert approx_equal(adp_energies.gradients, finite_difference_gradients) print "OK"