def test_NF_l1_regularization(self):
        mu = 5
        std = 5
        X, Y = self.get_samples(mu=mu, std=std, n_samples=500)

        nf_no_reg = NormalizingFlowEstimator("nf_no_reg",
                                             1,
                                             1,
                                             hidden_sizes=(16, 16),
                                             n_flows=10,
                                             weight_normalization=False,
                                             l1_reg=0.0,
                                             l2_reg=0.0,
                                             n_training_epochs=500)
        nf_reg_l1 = NormalizingFlowEstimator("nf_reg_l1",
                                             1,
                                             1,
                                             hidden_sizes=(16, 16),
                                             n_flows=10,
                                             weight_normalization=False,
                                             l1_reg=10.0,
                                             l2_reg=0.0,
                                             n_training_epochs=500)
        nf_no_reg.fit(X, Y)
        nf_reg_l1.fit(X, Y)

        y = np.arange(mu - 3 * std, mu + 3 * std, 6 * std / 20)
        x = np.asarray([mu for i in range(y.shape[0])])
        p_true = norm.pdf(y, loc=mu, scale=std)
        err_no_reg = np.mean(np.abs(nf_no_reg.pdf(x, y) - p_true))
        err_reg_l1 = np.mean(np.abs(nf_reg_l1.pdf(x, y) - p_true))

        print(err_no_reg, err_reg_l1)

        self.assertLessEqual(err_reg_l1, err_no_reg)
    def test_dropout(self):
        with tf.Session() as sess:
            bimix_gauss = tf.contrib.distributions.Mixture(
                cat=tf.distributions.Categorical(probs=[0.5, 0.5]),
                components=[
                    tf.distributions.Normal(loc=-1., scale=0.5),
                    tf.distributions.Normal(loc=+1., scale=0.5),
                ])
            x = np.ones(5000)
            y = sess.run(bimix_gauss.sample([5000]))

            dropout_model = NormalizingFlowEstimator("nf_dropout_reasonable", 1, 1,
                                                     flows_type=('affine', 'radial', 'radial'),
                                                     data_normalization=True, dropout=0.5, random_seed=22)
            full_dropout = NormalizingFlowEstimator("nf_dropout_full", 1, 1,
                                                    flows_type=('affine', 'radial', 'radial'),
                                                    data_normalization=True, dropout=0.85, random_seed=22)
            dropout_model.fit(x, y)
            full_dropout.fit(x, y)

            p_est = dropout_model.pdf(x, y)
            p_est_trash = full_dropout.pdf(x, y)
            p_true = sess.run(bimix_gauss.prob(y))

            self.assertLessEqual(np.mean(np.abs(p_true - p_est)), 0.02)
            self.assertGreater(np.mean(np.abs(p_true - p_est_trash)), 0.02)
    def test_NF_adaptive_noise(self):
        adaptive_noise_fn = lambda n, d: 0.0 if n < 1000 else 5.0

        X, Y = self.get_samples(mu=0, std=1, n_samples=999)
        est = NormalizingFlowEstimator("nf_999",
                                       1,
                                       1,
                                       y_noise_std=0.0,
                                       n_flows=2,
                                       hidden_sizes=(8, 8),
                                       x_noise_std=0.0,
                                       adaptive_noise_fn=adaptive_noise_fn,
                                       n_training_epochs=500)
        est.fit(X, Y)
        std_999 = est.std_(x_cond=np.array([[0.0]]))[0]

        X, Y = self.get_samples(mu=0, std=1, n_samples=1002)
        est = NormalizingFlowEstimator("nf_1002",
                                       1,
                                       1,
                                       y_noise_std=0.0,
                                       n_flows=2,
                                       hidden_sizes=(8, 8),
                                       x_noise_std=0.0,
                                       adaptive_noise_fn=adaptive_noise_fn,
                                       n_training_epochs=500)
        est.fit(X, Y)
        std_1002 = est.std_(x_cond=np.array([[0.0]]))[0]

        self.assertLess(std_999, std_1002)
        self.assertGreater(std_1002, 2)
    def _test_flow_correct_dims_NN(self, flow_name):
        """
        General structure:
        flow_params = MLP(x)
        pdf(y|x) = flow(y, flow_params)

        The tensor being transformed (=y) are of shape (batch_size, event_dims)
        - batch_size = len(x) == len(y)
        - event_dims = rank(y)

        For each element of x, the MLP outputs one parametrization for the flows
        for each of these parameters, the flow transforms one element of y
        therefore len(x) == len(y)
        the event dimension describes the rank of the base probability distribution that's being transformed

        Tensorflow's MultivariateNormal doesn't implement a CDF. Therefore we switch to a Normal for 1-D Problems
        Caveat:
          MultivariateNormal PDF output shape: (batch_size, )
          UnivariateNormal PDF output shape: (batch_size, 1)
        Therefore we adapt the output shape of the ildj to be (batch_size, 1) for 1-D, (batch_size, ) for N-D

        The flows are transforming tensors (batch_size, event_size)
        Forward: (batch_size, event_size) -> (batch_size, event_size)
        Inverse: (batch_size, event_size) -> (batch_size, event_size)
        ILDJ: (batch_size, event_size) -> (batch_size, 1) [1-D] or (batch_size, ) [N-D]

        This forms a transformed distribution:
        Sample:  -> (batch_size, event_size)
        PDF: (batch_size, event_size) -> (batch_size, 1) [1-D] or (batch_size, ) [N-D]
        CDF: (batch_size, event_size) -> (batch_size, 1) [EXISTS ONLY FOR 1-D!]
        """
        tests = [
            {
                'x': [[1.], [0.], [2.], [4.], [1.]],
                'y': [[1.], [0.], [2.], [3.], [1.]],
                'ndim_x': 1,
                'ndim_y': 1
            },
            {
                'x': [[1., 1.], [0., 0.], [2., 2.], [4., 4.], [1., 1.]],
                'y': [[1., 1.], [0., 0.], [2., 2.], [3., 3.], [1., 1.]],
                'ndim_x': 2,
                'ndim_y': 2
            }
        ]
        with tf.Session() as sess:
            for test in tests:
                model = NormalizingFlowEstimator('nf_dimtest_' + flow_name + str(tests.index(test)),
                                                 test['ndim_x'], test['ndim_y'],
                                                 random_seed=22, n_training_epochs=2,
                                                 flows_type=(flow_name,))
                x, y = np.array(test['x']), np.array(test['y'])
                model.fit(x, y)
                p = model.pdf(x, y)
                self.assertEqual(p.shape, (len(y),))
                # every test has equal first and last elements, theses are basic sanity tests
                self.assertAlmostEqual(p[0], p[-1], places=5)
                self.assertNotAlmostEqual(p[0], p[1], places=5)
    def test_NF_log_pdf(self):
        X, Y = np.random.normal(size=(1000, 3)), np.random.normal(size=(1000, 3))

        with tf.Session() as sess:
            model = NormalizingFlowEstimator("nf_logprob", 3, 3, flows_type=('affine', 'planar'),
                                             n_training_epochs=10, random_seed=22)
            model.fit(X, Y)

            x, y = np.random.normal(size=(1000, 3)), np.random.normal(size=(1000, 3))
            prob = model.pdf(x, y)
            log_prob = model.log_pdf(x, y)
            self.assertLessEqual(np.mean(np.abs(prob - np.exp(log_prob))), 0.001)
 def test_pickle_unpickle_NF_estimator(self):
     X, Y = self.get_samples()
     with tf.Session() as sess:
         model = NormalizingFlowEstimator('nf_pickle', 2, 2, ('affine', 'radial', 'radial'),
                                          data_normalization=True, random_seed=22, n_training_epochs=10)
         model.fit(X, Y)
         pdf_before = model.pdf(X, Y)
         dump_string = pickle.dumps(model)
     tf.reset_default_graph()
     with tf.Session() as sess:
         model_loaded = pickle.loads(dump_string)
         pdf_after = model_loaded.pdf(X, Y)
     diff = np.sum(np.abs(pdf_after - pdf_before))
     self.assertAlmostEqual(diff, 0, places=2)
    def test_NF_chain2_with_2d_gaussian2(self):
        mu = -5
        std = 2.5
        X, Y = self.get_samples(mu=mu, std=std)

        model = NormalizingFlowEstimator("nf_estimator_2d_chain2_2", 1, 1, flows_type=('radial', 'planar', 'radial'),
                                         n_training_epochs=500, random_seed=22)
        model.fit(X, Y)

        y = np.arange(mu - 3 * std, mu + 3 * std, 6 * std / 20)
        x = np.asarray([mu for i in range(y.shape[0])])
        p_est = model.pdf(x, y)
        p_true = norm.pdf(y, loc=mu, scale=std)
        self.assertLessEqual(np.mean(np.abs(p_true - p_est)), 0.1)
    def test_data_normalization(self):
        X, Y = self.get_samples(std=2, mean=20)
        with tf.Session() as sess:
            model = NormalizingFlowEstimator("nf_data_normalization", 1, 1, flows_type=('affine', 'radial', 'radial'),
                                             x_noise_std=None, y_noise_std=None, data_normalization=True,
                                             n_training_epochs=100)
            model.fit(X, Y)

            # test if data statistics were properly assigned to tf graph
            x_mean, x_std = model.sess.run([model.mean_x_sym, model.std_x_sym])
            print(x_mean, x_std)
            mean_diff = float(np.abs(x_mean - 20))
            std_diff = float(np.abs(x_std - 2))
            self.assertLessEqual(mean_diff, 0.5)
            self.assertLessEqual(std_diff, 0.5)
    def test_NF_identitiy_with_2d_gaussian(self):
        mu = 200
        std = 23
        X, Y = self.get_samples(mu=mu, std=std)

        model1 = NormalizingFlowEstimator("nf_estimator_2d_planar_no_id", 1, 1, flows_type=('planar',),
                                          n_training_epochs=50, random_seed=22)
        model2 = NormalizingFlowEstimator("nf_estimator_2d_planar_id", 1, 1, flows_type=('planar', 'identity'),
                                          n_training_epochs=50, random_seed=22)
        model1.fit(X, Y)
        model2.fit(X, Y)

        y = np.arange(mu - 3 * std, mu + 3 * std, 6 * std / 20)
        x = np.asarray([mu for i in range(y.shape[0])])
        p = model1.pdf(x, y)
        p_id = model2.pdf(x, y)
        self.assertLessEqual(np.mean(np.abs(p - p_id)), 0.01)
    def test_weight_decay(self):
        with tf.Session() as sess:
            bimix_gauss = tf.contrib.distributions.Mixture(
                cat=tf.distributions.Categorical(probs=[0.5, 0.5]),
                components=[
                    tf.distributions.Normal(loc=-1., scale=0.5),
                    tf.distributions.Normal(loc=+1., scale=0.5),
                ])
            x = np.ones(5000)
            y = sess.run(bimix_gauss.sample([5000]))
            model = NormalizingFlowEstimator("nf_estimator_weight_decay", 1, 1,
                                             flows_type=('affine', 'radial', 'radial'),
                                             data_normalization=True, weight_decay=0.0001, n_training_epochs=1000,
                                             random_seed=22)
            model.fit(x, y)

            p_est = model.pdf(x, y)
            p_true = sess.run(bimix_gauss.prob(y))
            self.assertLessEqual(np.mean(np.abs(p_true - p_est)), 0.01)
    def test_tri_modal_radial_chain(self):
        with tf.Session() as sess:
            bimix_gauss = tf.contrib.distributions.Mixture(
                cat=tf.distributions.Categorical(probs=[0.3, 0.4, 0.3]),
                components=[
                    tf.distributions.Normal(loc=-1., scale=0.4),
                    tf.distributions.Normal(loc=0., scale=0.4),
                    tf.distributions.Normal(loc=+1., scale=0.4),
                ])
            x = np.ones(5000)
            y = sess.run(bimix_gauss.sample([5000]))

            model = NormalizingFlowEstimator("nf_estimator_bimodal_radial", 1, 1,
                                             flows_type=('radial', 'radial', 'radial'),
                                             n_training_epochs=1000, random_seed=22)
            model.fit(x, y)

            p_est = model.pdf(x, y)
            p_true = sess.run(bimix_gauss.prob(y))
            self.assertLessEqual(np.mean(np.abs(p_true - p_est)), 0.1)
    def test_bi_modal_planar_chain(self):
        with tf.Session() as sess:
            bimix_gauss = tf.contrib.distributions.Mixture(
                cat=tf.distributions.Categorical(probs=[0.5, 0.5]),
                components=[
                    tf.distributions.Normal(loc=-.4, scale=0.4),
                    tf.distributions.Normal(loc=+.4, scale=0.4),
                ])
            x = tf.distributions.Normal(loc=0., scale=1.).sample([5000])
            y = bimix_gauss.sample([5000])
            x, y = sess.run([x, y])

            model = NormalizingFlowEstimator("nf_estimator_bimodal_planar", 1, 1,
                                             flows_type=('affine', 'planar', 'planar', 'planar'),
                                             n_training_epochs=1000, random_seed=22)
            model.fit(x, y)

            p_est = model.pdf(x, y)
            p_true = sess.run(bimix_gauss.prob(y))
            self.assertLessEqual(np.mean(np.abs(p_true - p_est)), 0.1)