Exemple #1
0
def Winds_hPa(U,V,P,pressurelevel):
        # Calculates and creates a file with pressurelevel hPa winds
        pressurelevel_pascal=pressurelevel*100.
        U_hPa=cdu.logLinearInterpolation(U,P,levels=pressurelevel_pascal)
        U_hPa.long_name=''.join(['U at ',str(pressurelevel),'hPa'])
        U_hPa.id='U'
        U_hPa.notes='U manipulated by cdutils.logLinearInterpolation'
        V_hPa=cdu.logLinearInterpolation(V,P,levels=pressurelevel_pascal)
        V_hPa.long_name=''.join(['V at ',str(pressurelevel),'hPa'])
        V_hPa.notes='V manipulated by cdutils.logLinearInterpolation'
        V_hPa.id='V'
        return U_hPa,V_hPa
Exemple #2
0
    def testVert(self):

        f = cdms2.open(
            os.path.join(cdat_info.get_sampledata_path(), 'vertical.nc'))
        Ps = f('PS')
        U = f('U')
        B = f('hybm')
        A = f('hyam')
        Po = f('variable_2')
        P = cdutil.reconstructPressureFromHybrid(Ps, A, B, Po)

        U2 = cdutil.logLinearInterpolation(U, P)
        U2b = cdutil.logLinearInterpolation(U, P, axis='0')
        self.assertTrue(numpy.ma.allclose(U2, U2b))
        U2b = cdutil.logLinearInterpolation(U, P, axis='(lev)')
        self.assertTrue(numpy.ma.allclose(U2, U2b))
Exemple #3
0
def EIS_LTS(T,P,RELHUM):
        #Calculates the Lower Tropospheric Stability (LTS) and Estimated Inversion Strenght (EIS)
        Theta_700=cdu.logLinearInterpolation(T,P,levels=70000)*(1000./700.)**(2./7.)
        Theta_700=cdu.averager(Theta_700,axis='z')
        Theta_1000=cdu.logLinearInterpolation(T,P,levels=100000)
        Theta_1000=cdu.averager(Theta_1000,axis='z')
        LTS=Theta_700-Theta_1000
        LTS.id='LTS'
        LTS.long_name='Lower tropospheric stability'
        LTS.units='K'
        Theta_700.long_name='Potential temperature at 700hPa'
        Theta_700.units='K'
        Theta_1000.long_name='Potential temperature at 1000hPa'
        Theta_1000.units='K'
        # !!! Still need to develop EIS !!!
        EIS=LTS
        return LTS,EIS,Theta_700,Theta_1000
Exemple #4
0
def Variable_hPa(var,P,pressurelevel):
        # Calculates and creates a file with pressurelevel hPa winds
        pressurelevel_pascal=pressurelevel*100.
        var_hPa=cdu.logLinearInterpolation(var,P,levels=pressurelevel_pascal)
        var_id=var.id
        var_hPa.long_name=''.join([var_id,' at ',str(pressurelevel),'hPa'])
        var_hPa.id=var_id
        var_hPa.notes=''.join([var_id,' manipulated by cdutils.logLinearInterpolation'])
        return var_hPa
Exemple #5
0
#!/usr/bin/env python
# Adapted for numpy/ma/cdms2 by convertcdms.py


import cdutil

import cdms2 as cdms,vcs,sys,os
import vcs.test.support
bg = vcs.test.support.bg

f = cdms.open(os.path.join(cdms.__path__[0],'..','..','..','..','sample_data','vertical.nc'))
Ps=f('PS')
U=f('U')
B=f('hybm')
A=f('hyam')
Po=f('variable_2')
P=cdutil.reconstructPressureFromHybrid(Ps,A,B,Po)

U2=cdutil.logLinearInterpolation(U,P)

x=vcs.init()
x.plot(U2,bg=bg)
vcs.test.support.check_plot(x)
Exemple #6
0
#!/usr/bin/env python
# Adapted for numpy/ma/cdms2 by convertcdms.py

import cdutil, cdat_info

import cdms2
import os
bg = 0

f = cdms2.open(os.path.join(cdat_info.get_sampledata_path(), 'vertical.nc'))
Ps = f('PS')
U = f('U')
B = f('hybm')
A = f('hyam')
Po = f('variable_2')
P = cdutil.reconstructPressureFromHybrid(Ps, A, B, Po)

U2 = cdutil.logLinearInterpolation(U, P)

#x=vcs.init()
#x.plot(U2,bg=bg)
#raw_input()
Exemple #7
0
#!/usr/bin/env python
# Adapted for numpy/ma/cdms2 by convertcdms.py


import cdutil
import cdat_info
import numpy

import cdms2
import os
bg = 0

f = cdms2.open(os.path.join(cdat_info.get_sampledata_path(), 'vertical.nc'))
Ps = f('PS')
U = f('U')
B = f('hybm')
A = f('hyam')
Po = f('variable_2')
P = cdutil.reconstructPressureFromHybrid(Ps, A, B, Po)

U2 = cdutil.logLinearInterpolation(U, P)
U2b = cdutil.logLinearInterpolation(U, P, axis='0')
assert(numpy.ma.allclose(U2, U2b))
U2b = cdutil.logLinearInterpolation(U, P, axis='(lev)')
assert(numpy.ma.allclose(U2, U2b))
Exemple #8
0
axes = v.getAxisList()
opened = False
for itim, tm in enumerate(tim):  # loop over time

    if ranks[itim] == myPe:

        T = v(time=slice(itim, itim + 1))
        Ps = fps('ps', time=slice(itim, itim + 1))

        # create the pressure field
        P = cdutil.reconstructPressureFromHybrid(Ps, A, B, Po)

        # interpolate
        print '[%d] Interpolating at time index %d' % (myPe, itim)
        out = cdutil.logLinearInterpolation(T, P, levels)
        out.info()
        ## print '[%d] Done!' % myPe
        ## sh=list(out.shape)
        ## sh.insert(0,1)
        ## out=MA.reshape(out,tuple(sh))
        ## t=tim.subAxis(itim,itim+1)
        ## xx=reltime(tim[itim],tim.units)
        ## t_new=xx.torel('days since 1800').value
        ## t[0]=t_new
        ## t.units='days since 1800'
        ## meta[0][0]=t
        ## levelsax=cdms.createAxis(levels/100.)
        ## levelsax.id='plev'
        ## levelsax.units='hPa'
        ## levelsax.designateLevel()
Exemple #9
0
axes=v.getAxisList()
opened = False
for itim,tm in enumerate(tim): # loop over time
 
    if ranks[itim] == myPe:

      T=v(time=slice(itim,itim+1))
      Ps=fps('ps',time=slice(itim,itim+1))

      # create the pressure field
      P=cdutil.reconstructPressureFromHybrid(Ps,A,B,Po)

      # interpolate
      print '[%d] Interpolating at time index %d' % (myPe, itim)
      out=cdutil.logLinearInterpolation(T,P,levels)
      out.info()
      ## print '[%d] Done!' % myPe
      ## sh=list(out.shape)
      ## sh.insert(0,1)
      ## out=MA.reshape(out,tuple(sh))
      ## t=tim.subAxis(itim,itim+1)
      ## xx=reltime(tim[itim],tim.units)
      ## t_new=xx.torel('days since 1800').value
      ## t[0]=t_new
      ## t.units='days since 1800'
      ## meta[0][0]=t
      ## levelsax=cdms.createAxis(levels/100.)
      ## levelsax.id='plev'
      ## levelsax.units='hPa'
      ## levelsax.designateLevel()