Exemple #1
0
def _create_gpcca(*, backward: bool = False) -> Tuple[AnnData, GPCCA]:
    adata = _adata_medium.copy()

    sc.tl.paga(adata, groups="clusters")

    vk = VelocityKernel(
        adata, backward=backward).compute_transition_matrix(softmax_scale=4)
    ck = ConnectivityKernel(adata,
                            backward=backward).compute_transition_matrix()
    final_kernel = 0.8 * vk + 0.2 * ck

    mc = GPCCA(final_kernel)

    mc.compute_partition()
    mc.compute_eigendecomposition()
    mc.compute_schur(method="krylov")
    mc.compute_macrostates(n_states=2)
    mc.set_terminal_states_from_macrostates()
    mc.compute_absorption_probabilities()
    mc.compute_lineage_drivers(cluster_key="clusters", use_raw=False)

    assert adata is mc.adata
    if backward:
        assert str(AbsProbKey.BACKWARD) in adata.obsm
    else:
        assert str(AbsProbKey.FORWARD) in adata.obsm
    np.testing.assert_allclose(mc.absorption_probabilities.X.sum(1),
                               1.0,
                               rtol=1e-6)

    return adata, mc
Exemple #2
0
def lineages(
    adata: AnnData,
    backward: bool = False,
    copy: bool = False,
    return_estimator: bool = False,
    **kwargs,
) -> Optional[AnnData]:
    """
    Compute probabilistic lineage assignment using RNA velocity.

    For each cell `i` in :math:`{1, ..., N}` and %(initial_or_terminal)s state `j` in :math:`{1, ..., M}`,
    the probability is computed that cell `i` is either going to %(terminal)s state `j` (``backward=False``)
    or is coming from %(initial)s state `j` (``backward=True``).

    This function computes the absorption probabilities of a Markov chain towards the %(initial_or_terminal) states
    uncovered by :func:`cellrank.tl.initial_states` or :func:`cellrank.tl.terminal_states` using a highly efficient
    implementation that scales to large cell numbers.

    It's also possible to calculate mean and variance of the time until absorption for all or just a subset
    of the %(initial_or_terminal)s states. This can be seen as a pseudotemporal measure, either towards any terminal
    population of the state change trajectory, or towards specific ones.

    Parameters
    ----------
    %(adata)s
    %(backward)s
    copy
        Whether to update the existing ``adata`` object or to return a copy.
    return_estimator
        Whether to return the estimator. Only available when ``copy=False``.
    **kwargs
        Keyword arguments for :meth:`cellrank.tl.estimators.BaseEstimator.compute_absorption_probabilities`.

    Returns
    -------
    :class:`anndata.AnnData`, :class:`cellrank.tl.estimators.BaseEstimator` or :obj:`None`
        Depending on ``copy`` and ``return_estimator``, either updates the existing ``adata`` object,
        returns its copy or returns the estimator.
    """

    if backward:
        lin_key = AbsProbKey.BACKWARD
        fs_key = TermStatesKey.BACKWARD
        fs_key_pretty = TerminalStatesPlot.BACKWARD
    else:
        lin_key = AbsProbKey.FORWARD
        fs_key = TermStatesKey.FORWARD
        fs_key_pretty = TerminalStatesPlot.FORWARD

    try:
        pk = PrecomputedKernel(adata=adata, backward=backward)
    except KeyError as e:
        raise RuntimeError(
            f"Compute transition matrix first as `cellrank.tl.transition_matrix(..., backward={backward})`."
        ) from e

    start = logg.info(
        f"Computing lineage probabilities towards {fs_key_pretty.s}")
    mc = GPCCA(
        pk, read_from_adata=True, inplace=not copy
    )  # GPCCA is more general than CFLARE, in terms of what is saves
    if mc._get(P.TERM) is None:
        raise RuntimeError(
            f"Compute the states first as `cellrank.tl.{fs_key.s}(..., backward={backward})`."
        )

    # compute the absorption probabilities
    mc.compute_absorption_probabilities(**kwargs)

    logg.info(f"Adding lineages to `adata.obsm[{lin_key.s!r}]`\n    Finish",
              time=start)

    return mc.adata if copy else mc if return_estimator else None
Exemple #3
0
                     dpi=300,
                     save='{}_schur.png'.format(key))
        g.compute_metastable_states(n_states=1, cluster_key=clusters)
        g.plot_metastable_states(show=False,
                                 dpi=300,
                                 save='{}_metastable.png'.format(key))

    g.plot_metastable_states(discrete=True,
                             show=False,
                             dpi=300,
                             legend_fontsize=0,
                             save='{}_discrete_metastable.pdf'.format(key),
                             size=28)
    g.set_final_states_from_metastable_states()
    if key == "H508_EV" or key == "HT29_EV":
        g.compute_absorption_probabilities()
        g.compute_lineage_drivers()
        samples[key].var.to_csv(key + "_lineages.tsv", sep='\t')
        print(samples[key].var.columns)
        if key == "HT29_EV":
            g.plot_lineage_drivers(
                '17', save='{}_17_lineage_drivers.png'.format(key))
            g.plot_lineage_drivers(
                '1', save='{}_10_lineage_drivers.png'.format(key))
            g.plot_lineage_drivers('11',
                                   save='{}_1_lineage_drivers.png'.format(key))
            g.plot_lineage_drivers('4',
                                   save='{}_4_lineage_drivers.png'.format(key))

        if key == "H508_EV":
            g.plot_lineage_drivers(