1、如果想要进行检测完的图片的保存,利用r_image.save("img.jpg")即可保存,直接在predict.py里进行修改即可。 
        2、如果想要获得预测框的坐标,可以进入centernet.detect_image函数,在绘图部分读取top,left,bottom,right这四个值。
        3、如果想要利用预测框截取下目标,可以进入centernet.detect_image函数,在绘图部分利用获取到的top,left,bottom,right这四个值
        在原图上利用矩阵的方式进行截取。
        4、如果想要在预测图上写额外的字,比如检测到的特定目标的数量,可以进入centernet.detect_image函数,在绘图部分对predicted_class进行判断,
        比如判断if predicted_class == 'car': 即可判断当前目标是否为车,然后记录数量即可。利用draw.text即可写字。
        '''
        while True:
            img = input('Input image filename:')
            try:
                image = Image.open(img)
            except:
                print('Open Error! Try again!')
                continue
            else:
                r_image = centernet.detect_image(image, crop=crop, count=count)
                r_image.show()

    elif mode == "video":
        capture = cv2.VideoCapture(video_path)
        if video_save_path != "":
            fourcc = cv2.VideoWriter_fourcc(*'XVID')
            size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)),
                    int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
            out = cv2.VideoWriter(video_save_path, fourcc, video_fps, size)

        ref, frame = capture.read()
        if not ref:
            raise ValueError("未能正确读取摄像头(视频),请注意是否正确安装摄像头(是否正确填写视频路径)。")

        fps = 0.0
Exemple #2
0
centernet = CenterNet()

# 调用摄像头
capture = cv2.VideoCapture(0)  # capture=cv2.VideoCapture("1.mp4")

fps = 0.0
while (True):
    t1 = time.time()
    # 读取某一帧
    ref, frame = capture.read()
    # 格式转变,BGRtoRGB
    frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
    # 转变成Image
    frame = Image.fromarray(np.uint8(frame))
    # 进行检测
    frame = np.array(centernet.detect_image(frame))

    fps = (fps + (1. / (time.time() - t1))) / 2
    print("fps= %.2f" % (fps))
    frame = cv2.putText(frame, "fps= %.2f" % (fps), (0, 40),
                        cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

    # RGBtoBGR满足opencv显示格式
    frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
    cv2.imshow("video", frame)
    c = cv2.waitKey(30) & 0xff
    if c == 27:
        capture.release()
        break
'''
predict.py有几个注意点
1、无法进行批量预测,如果想要批量预测,可以利用os.listdir()遍历文件夹,利用Image.open打开图片文件进行预测。
2、如果想要保存,利用r_image.save("img.jpg")即可保存。
3、如果想要获得框的坐标,可以进入detect_image函数,读取top,left,bottom,right这四个值。
4、如果想要截取下目标,可以利用获取到的top,left,bottom,right这四个值在原图上利用矩阵的方式进行截取。
'''
from centernet import CenterNet
from PIL import Image

centernet = CenterNet()

while True:
    img = input('Input image filename:')
    try:
        image = Image.open(img)
    except:
        print('Open Error! Try again!')
        continue
    else:
        r_image = centernet.detect_image(image)
        # r_image.save("img.jpg")
        r_image.show()