""" gbc = sklearn_classifier.ClassifierSklearn(base_classifier=classifier, directory='cern_time_series_classification_gbc/') """ gbc.set_params(features=variables) # training classifier gbc.fit(signal_train, bck_train) # <codecell> # get prediction on data after classification from cern_utils.predictions_report import PredictionsInfo report = PredictionsInfo({'GBC': gbc}, signal_test, bck_test) # <codecell> #Plot importances of features according to trained model importance = gbc.get_feature_importance() importance.sort(['effect'], ascending=False)[['effect']].plot(figsize=(13,3), kind='bar') # <codecell> #Plot learning curves to see possible overfitting of trained classifier from sklearn.metrics import log_loss, roc_auc_score, average_precision_score def deviance(y_true, y_pred, sample_weight): return gbc.base_classifier.loss_(y_true, y_pred)
xgboost = xgboost_classifier.ClassifierXGBoost(directory='xgboost/') xgboost.set_params(features = variables, params = plst) #setup additional parameters xgboost.num_boost_round = 2500 xgboost.watch = False #trainig classifier xgboost.fit(signal_train, bck_train)#,\ #weight_sig=signal_train.get_data(['total_usage']).values,\ #weight_bck=bck_train.get_data(['total_usage']).values) # <codecell> # get prediction on data after classification from cern_utils.predictions_report import PredictionsInfo report = PredictionsInfo({'xgboost': xgboost}, signal_test, bck_test) report_train = PredictionsInfo({'xgboost': xgboost}, signal_train, bck_train) # <codecell> #Plot importances of features according to trained model importance = xgboost.get_feature_importance() importance.sort(['effect'], ascending=False)[['effect']].plot(figsize=(13,3), kind='bar') # <codecell> #Plot learning curves to see possible overfitting of trained classifier from sklearn.metrics import log_loss, roc_auc_score, average_precision_score def log_loss(y_true, y_pred): return log_loss(y_true, y_pred)