Exemple #1
0
# headings = np.arange(0, 360, step=DDEG) # AK12 only
hxyz = dem.horizon(eop['xyz'], headings)

# --- Format and save GeoJSON ---- #

geo = geojson.FeatureCollection([
    geojson.Feature(geometry=geojson.LineString(xyz.tolist())) for xyz in hxyz
])
geo = glimpse.helpers.ordered_geojson(geo)
glimpse.helpers.write_geojson(geo,
                              'geojson/horizons/' + STATION + '.geojson',
                              crs=32606,
                              decimals=(5, 5, 0))

# --- Check result ---- #

svg_path = glob.glob('svg/' + STATION + '_*.svg')[-1]
img_path = cg.find_image(svg_path)
cam_args = cg.load_calibrations(path=img_path,
                                station_estimate=True,
                                merge=True)
img = glimpse.Image(img_path, cam=cam_args)
geo = glimpse.helpers.read_geojson('geojson/horizons/' + STATION + '.geojson',
                                   crs=32606)
lxyz = [coords for coords in glimpse.helpers.geojson_itercoords(geo)]
luv = [img.cam.project(xyz, correction=True) for xyz in lxyz]
img.plot()
for uv in luv:
    matplotlib.pyplot.plot(uv[:, 0], uv[:, 1], color='red')
img.set_plot_limits()
Exemple #2
0
 observers = []
 for station, basenames in observer_json[i_obs].items():
     meta = cg.parse_image_path(basenames[0], sequence=True)
     service_calibration = cg.load_calibrations(
         station_estimate=meta['station'], station=meta['station'],
         camera=meta['camera'], merge=True, file_errors=False)
     datetimes = cg.paths_to_datetimes(basenames)
     # Use dummy Exif for speed
     service_exif = glimpse.Exif(cg.find_image(basenames[0]))
     images = []
     for basename, t in zip(basenames, datetimes):
         calibration = glimpse.helpers.merge_dicts(service_calibration,
             cg.load_calibrations(image=basename, viewdir=basename, merge=True,
             file_errors=False))
         path = cg.find_image(basename)
         image = glimpse.Image(path, cam=calibration, datetime=t, exif=service_exif)
         images.append(image)
     # NOTE: Determine sigma programmatically?
     observer = glimpse.Observer(images, cache=True, correction=True, sigma=0.3)
     observers.append(observer)
 # ---- Load track points ----
 t = min([observer.datetimes[0] for observer in observers])
 datestr = t.strftime('%Y%m%d')
 basename = str(i_obs)
 # ids, xy, observer_mask, vrthz, vrthz_sigma, flotation
 params = glimpse.helpers.read_pickle(
     os.path.join(points_path, basename + '.pkl'))
 # ---- Load DEM ----
 # dem, dem_sigma
 dem, dem_sigma = dem_interpolant(t, return_sigma=True)
 # Crop DEM (for lower memory use)
    m.plot(scale=20, width=1, selected='yellow')
    errors = (1 / scale) * np.linalg.norm(m.observed() - m.predicted(), axis=1)
    matplotlib.pyplot.title(
        glimpse.helpers.strip_path(img.path) + ' - ' +
        glimpse.helpers.strip_path(imgB.path) + '\n' +
        str(round(errors.mean(), 2)) + ', ' + str(round(errors.std(), 2)))
    img.set_plot_limits()
    img.cam.resize(1)
    imgB.cam.resize(1)
    m.resize(1)

# ---- Check single image (svg) ---- #

basename = 'AK10b_20120605_203759'
img = glimpse.Image(path=cg.find_image(basename),
                    cam=cg.load_calibrations(basename,
                                             station_estimate=True,
                                             merge=True))
controls = cg.svg_controls(img)
svg_model = glimpse.optimize.Cameras(img.cam,
                                     controls,
                                     cam_params=dict(viewdir=True),
                                     group_params=group_params[-1])
svg_fit = svg_model.fit(full=True, group_params=group_params[:-1])
matplotlib.pyplot.figure()
img.plot()
svg_model.plot(svg_fit.params)
img.set_plot_limits()

# ---- Check undistorted image ---- #

basename = 'AKJNC_20120508_191103C'
Exemple #4
0
 meta = cg.parse_image_path(path, sequence=True)
 svg_keys = camera_keys.get(meta['camera'], keys)
 for suffix in suffixes:
     if not os.path.isfile(os.path.join(
         'cameras', meta['camera'] + suffix + '.json')):
         continue
     basename = os.path.join('images', meta['basename'] + suffix)
     if os.path.isfile(basename + '.json'):
         continue
     print(meta['basename'] + suffix)
     # TODO: Use station xyz estimated for calib for non-fixed stations
     calibration = cg.load_calibrations(path,
         station_estimate=meta['station'], station=meta['station'],
         camera=meta['camera'] + suffix, merge=True, file_errors=False)
     img_path = cg.find_image(path)
     img = glimpse.Image(img_path, cam=calibration)
     controls = cg.svg_controls(img, keys=svg_keys, step=step)
     controls += cg.synth_controls(img, step=step)
     if not controls:
         print("No controls found")
         continue
     model = glimpse.optimize.Cameras(
         cams=img.cam, controls=controls, cam_params=dict(viewdir=True))
     fit = model.fit(full=True)
     model.set_cameras(fit.params)
     img.cam.write(basename + '.json',
         attributes=('xyz', 'viewdir', 'fmm', 'cmm', 'k', 'p', 'sensorsz'),
         indent=4, flat_arrays=True)
     # Plot image with markup
     fig = matplotlib.pyplot.figure(
         figsize=tuple(img.cam.imgsz / 100), dpi=100 * 0.25, frameon=False)
Exemple #5
0
# ---- Load first image from each observer station ----
# images

json = glimpse.helpers.read_json('observers.json',
    object_pairs_hook=collections.OrderedDict)
start_images = []
progress = glimpse.helpers._progress_bar(max=len(json))
for observers in json:
    starts = []
    for station, basenames in observers.items():
        ids = cg.parse_image_path(basenames[0], sequence=True)
        cam_args = cg.load_calibrations(station=station, camera=ids['camera'],
            image=basenames[0], viewdir=basenames[0], merge=True,
            file_errors=False)
        path = cg.find_image(basenames[0])
        starts.append(glimpse.Image(path, cam=cam_args))
    start_images.append(tuple(starts))
    progress.next()

# ---- Load DEM interpolant ----

dem_interpolant = glimpse.helpers.read_pickle(dem_interpolant_path)

# ---- Load canonical velocities (cartesian) ----
# vx, vx_sigma, vy, vy_sigma

names = 'vx', 'vx_stderr', 'vy', 'vy_stderr'
vx, vx_sigma, vy, vy_sigma = [glimpse.Raster.read(
    os.path.join('velocity', name + '.tif'))
    for name in names]
IMG_SIZE = 0.5
FIGURE_SIZE = 0.25
MAX_RATIO = 0.5

# For each motion sequence...
motion = glimpse.helpers.read_json('motion.json')
for d in motion:
    paths = np.asarray(d['paths'])
    # Skip if all files already exist
    basenames = [os.path.join('motion', paths[i] + '-' + paths[i + 1])
        for i in range(len(paths) - 1)]
    nexists = np.sum([os.path.isfile(basename + '.pkl') for basename in basenames])
    if nexists == len(paths) - 1:
        continue
    # Load images
    images = [glimpse.Image(cg.find_image(path)) for path in paths]
    # Compute sequential matches
    for img in images:
        img.cam.resize(IMG_SIZE)
    matches = cg.build_sequential_matches(images, match=dict(max_ratio=MAX_RATIO))
    # For each motion pair...
    for i, control in enumerate(matches):
        # Skip if file exists
        if os.path.isfile(basenames[i] + '.pkl'):
            continue
        print(basenames[i])
        # Initialize control
        control.resize(1)
        # Filter with RANSAC
        model = glimpse.optimize.Cameras(
            control.cams, control,
Exemple #7
0
]
for image in images:
    basename = os.path.join(cg.CG_PATH, 'svg-synth', image)
    # Skip if output exists
    if os.path.isfile(basename + '.png'):
        continue
    print(image)
    # Prepare image
    cam = cg.load_calibrations(image,
                               station=True,
                               camera=True,
                               image=True,
                               viewdir=True,
                               merge=True,
                               file_errors=False)
    img = glimpse.Image(basename + '.JPG', cam=cam)
    I = img.read()
    if I.ndim > 2:
        I = glimpse.helpers.rgb_to_gray(I).astype(np.uint8)
    # Prepare synthetic image
    cam = glimpse.helpers.read_json(basename + '-synth.json')
    simg = glimpse.Image(basename + '-synth.JPG', cam=cam)
    sI = simg.read()
    if sI.ndim > 2:
        smask = (sI[:, :, 0] != 127).astype(np.uint8)
        sI = glimpse.helpers.rgb_to_gray(sI).astype(np.uint8)
    else:
        smask = (sI != 127).astype(np.uint8)
    depth = glimpse.Raster.read(basename + '-depth.tif')
    depth_sigma = glimpse.Raster.read(basename + '-depth_stderr.tif')
    depth_sigma.Z[np.isnan(depth_sigma.Z)] = 0