Exemple #1
0
class Neuron(object):
    def __init__(self, in_dim):
        self.in_dim = in_dim
        self.bias = Variable()
        self.weights = [Variable() for i in range(self.in_dim)]

    def init_params(self):
        """Init parameters with standard gaussian distribution."""
        for w in self.weights:
            w.set_value(random.gauss(0, 1), False)
        self.bias.set_value(random.gauss(0, 1), False)

    def params(self):
        return self.weights + [self.bias]

    def forward(self, inputs):
        assert len(inputs) == self.in_dim
        output = sum([v * w for v, w in zip(inputs, self.weights)])
        return F.relu(output + self.bias)
Exemple #2
0
class Neuron(object):
    """output = relu(a*x + b*y +c)"""
    def __init__(self, a, b, c, x, y):
        self.a = Variable(a)
        self.b = Variable(b)
        self.c = Variable(c)
        self.x = Variable(x)
        self.y = Variable(y)
        self.output = F.relu(self.a * self.x + self.b * self.y + self.c)

    def math(self, a, b, c, x, y):
        n = a * x + b * y + c
        return max(n, 0.0)  # relu

    def math_grad(self, a, b, c, x, y, h=0.001):
        t = self.math(a, b, c, x, y)
        a_grad = (self.math(a + h, b, c, x, y) - t) / h
        b_grad = (self.math(a, b + h, c, x, y) - t) / h
        c_grad = (self.math(a, b, c + h, x, y) - t) / h
        x_grad = (self.math(a, b, c, x + h, y) - t) / h
        y_grad = (self.math(a, b, c, x, y + h) - t) / h
        return a_grad, b_grad, c_grad, x_grad, y_grad

    def grad(self):
        return (self.a.grad, self.b.grad, self.c.grad, self.x.grad,
                self.y.grad)

    def forward(self):
        self.output.forward()
        return self.output.value

    def backward(self, grad=1.0):
        self.output.backward(grad)

    def zero_grad(self):
        self.output.zero_grad(backprop=True)

    def grad_descent(self, lr=0.01):
        self.a.set_value(-lr * self.a.grad, True)
        self.b.set_value(-lr * self.b.grad, True)
        self.c.set_value(-lr * self.c.grad, True)
        self.x.set_value(-lr * self.x.grad, True)
        self.y.set_value(-lr * self.y.grad, True)
Exemple #3
0
class TestVariableOperator(unittest.TestCase):

    def setUp(self):
        self.v0_ = -3.0
        self.v1_ = 2.0
        self.v2_ = 4.0
        self.v0 = Variable(self.v0_)
        self.v1 = Variable(self.v1_)
        self.v2 = Variable(self.v2_)

    def tearDown(self):
        pass

    def test_add(self):
        v = self.v0 + self.v1
        v_ = self.v0_ + self.v1_
        v0_grad_, v1_grad_ = 1.0, 1.0
        self.assertIsNone(v.value, None)
        v.forward()
        self.assertAlmostEqual(v.value, v_)
        # clear gradient buffer
        v.zero_grad()
        v.backward()
        self.assertEqual(v.grad, 1.0)
        self.assertAlmostEqual(self.v0.grad, v0_grad_)
        self.assertAlmostEqual(self.v1.grad, v1_grad_)
        # accumulate gradient
        v.backward()
        self.assertEqual(v.grad, 2.0)
        self.assertAlmostEqual(self.v0.grad, 3.0*v0_grad_)
        self.assertAlmostEqual(self.v1.grad, 3.0*v1_grad_)
        # add with const
        v = self.v0 + 1
        v_ = self.v0_ + 1
        v.forward()
        self.assertAlmostEqual(v.value, v_)
        v = 1 + self.v0
        v_ = 1 + self.v0_
        v.forward()
        self.assertAlmostEqual(v.value, v_)

    def test_sub(self):
        v = self.v0 - self.v1
        v_ = self.v0_ - self.v1_
        v0_grad_, v1_grad_ = 1.0, -1.0
        self.assertIsNone(v.value, None)
        v.forward()
        self.assertAlmostEqual(v.value, v_)
        # clear gradient buffer
        v.zero_grad()
        v.backward()
        self.assertEqual(v.grad, 1.0)
        self.assertAlmostEqual(self.v0.grad, v0_grad_)
        self.assertAlmostEqual(self.v1.grad, v1_grad_)
        # accumulate gradient
        v.backward()
        self.assertEqual(v.grad, 2.0)
        self.assertAlmostEqual(self.v0.grad, 3.0*v0_grad_)
        self.assertAlmostEqual(self.v1.grad, 3.0*v1_grad_)
        # subtract with const
        v = self.v0 - 1
        v_ = self.v0_ - 1
        v.forward()
        self.assertAlmostEqual(v.value, v_)
        v = 1 - self.v0
        v_ = 1 - self.v0_
        v.forward()
        self.assertAlmostEqual(v.value, v_)

    def test_mut(self):
        v = self.v0 * self.v1
        v_ = self.v0_ * self.v1_
        v0_grad_, v1_grad_ = self.v1_, self.v0_
        self.assertIsNone(v.value, None)
        v.forward()
        self.assertAlmostEqual(v.value, v_)
        # clear gradient buffer
        v.zero_grad()
        v.backward()
        self.assertEqual(v.grad, 1.0)
        self.assertAlmostEqual(self.v0.grad, v0_grad_)
        self.assertAlmostEqual(self.v1.grad, v1_grad_)
        # accumulate gradient
        v.backward()
        self.assertEqual(v.grad, 2.0)
        self.assertAlmostEqual(self.v0.grad, 3.0 * v0_grad_)
        self.assertAlmostEqual(self.v1.grad, 3.0 * v1_grad_)
        # multiply with const
        v = self.v0 * 2
        v_ = self.v0_ * 2
        v.forward()
        self.assertAlmostEqual(v.value, v_)
        v = 2 * self.v0
        v_ = 2 * self.v0_
        v.forward()
        self.assertAlmostEqual(v.value, v_)

    def test_div(self):
        v = self.v0 / self.v1
        v_ = self.v0_ / self.v1_
        v0_grad_ = 1 / self.v1_
        v1_grad_ = -self.v0_ / (self.v1_ ** 2)
        self.assertIsNone(v.value, None)
        v.forward()
        self.assertAlmostEqual(v.value, v_)
        # clear gradient buffer
        v.zero_grad()
        v.backward()
        self.assertEqual(v.grad, 1.0)
        self.assertAlmostEqual(self.v0.grad, v0_grad_)
        self.assertAlmostEqual(self.v1.grad, v1_grad_)
        # accumulate gradient
        v.backward()
        self.assertEqual(v.grad, 2.0)
        self.assertAlmostEqual(self.v0.grad, 3.0*v0_grad_)
        self.assertAlmostEqual(self.v1.grad, 3.0*v1_grad_)
        # divide with const
        v = self.v0 / 2
        v_ = self.v0_ / 2
        v.forward()
        self.assertAlmostEqual(v.value, v_)
        v = 2 / self.v0
        v_ = 2 / self.v0_
        v.forward()
        self.assertAlmostEqual(v.value, v_)

    def test_chain_mut(self):
        v = self.v1 * self.v1 * self.v1
        v_ = self.v1_ * self.v1_ * self.v1_
        v1_square = self.v1_ * self.v1_
        self.assertIsNone(v.value, None)
        v.forward()
        self.assertAlmostEqual(v.value, v_)
        # clear gradient
        v.zero_grad()
        v.backward()
        self.assertEqual(v.grad, 1.0)
        self.assertAlmostEqual(self.v1.grad, 3*v1_square)
        # accumulate gradient
        v.backward()
        self.assertEqual(v.grad, 2.0)
        self.assertAlmostEqual(self.v1.grad, 11*v1_square)  # not 3 times
        # mutliply const
        v = 2 * self.v1 * 3
        v_ = 2 * self.v1_ * 3
        v.forward()
        self.assertAlmostEqual(v.value, v_)

    def test_iadd(self):
        self.v0 += self.v1 + 3
        self.v0.forward()
        v0_ = self.v0_ + self.v1_ + 3
        self.assertAlmostEqual(self.v0.value, v0_)

    def test_isub(self):
        self.v0 -= self.v1 + 3
        self.v0.forward()
        v0_ = self.v0_ - self.v1_ - 3
        self.assertAlmostEqual(self.v0.value, v0_)

    def test_imut(self):
        self.v0 *= self.v1 * 3
        self.v0.forward()
        v0_ = self.v0_ * self.v1_ * 3
        self.assertAlmostEqual(self.v0.value, v0_)

    def test_idiv(self):
        self.v0 /= self.v1 * 3
        self.v0.forward()
        v0_ = self.v0_ / self.v1_ / 3
        self.assertAlmostEqual(self.v0.value, v0_)

    def test_max_f(self):
        v = F.max(self.v1, self.v2)
        v_ = max(self.v1_, self.v2_)
        if self.v1_ > self.v2_:
            v1_grad_ = 1.0
            v2_grad_ = 0.0
        else:
            v1_grad_ = 0.0
            v2_grad_ = 1.0
        self.assertIsNone(v.value, None)
        v.forward()
        self.assertAlmostEqual(v.value, v_)
        # clear gradient
        v.zero_grad()
        v.backward()
        self.assertEqual(v.grad, 1.0)
        self.assertAlmostEqual(self.v1.grad, v1_grad_)
        self.assertAlmostEqual(self.v2.grad, v2_grad_)
        # accumulate gradient
        v.backward()
        self.assertEqual(v.grad, 2.0)
        self.assertAlmostEqual(self.v1.grad, 3.0*v1_grad_)
        self.assertAlmostEqual(self.v2.grad, 3.0*v2_grad_)

    def test_max_f(self):
        v = F.min(self.v1, self.v2)
        v_ = min(self.v1_, self.v2_)
        if self.v1_ < self.v2_:
            v1_grad_ = 1.0
            v2_grad_ = 0.0
        else:
            v1_grad_ = 0.0
            v2_grad_ = 1.0
        self.assertIsNone(v.value, None)
        v.forward()
        self.assertAlmostEqual(v.value, v_)
        # clear gradient
        v.zero_grad()
        v.backward()
        self.assertEqual(v.grad, 1.0)
        self.assertAlmostEqual(self.v1.grad, v1_grad_)
        self.assertAlmostEqual(self.v2.grad, v2_grad_)
        # accumulate gradient
        v.backward()
        self.assertEqual(v.grad, 2.0)
        self.assertAlmostEqual(self.v1.grad, 3.0*v1_grad_)
        self.assertAlmostEqual(self.v2.grad, 3.0*v2_grad_)

    def test_square_f(self):
        v = F.square(self.v1)
        v_ = math.pow(self.v1_, 2)
        v1_grad_ = 2 * self.v1_
        self.assertIsNone(v.value, None)
        v.forward()
        self.assertAlmostEqual(v.value, v_)
        # clear gradient
        v.zero_grad()
        v.backward()
        self.assertEqual(v.grad, 1.0)
        self.assertAlmostEqual(self.v1.grad, v1_grad_)
        # accumulate gradient
        v.backward()
        self.assertEqual(v.grad, 2.0)
        self.assertAlmostEqual(self.v1.grad, 3.0*v1_grad_)  

    def test_pow_f(self):
        v = F.pow(self.v1, 3)
        v_ = math.pow(self.v1_, 3)
        v1_grad_ = 3 * (self.v1_ ** 2)
        self.assertIsNone(v.value, None)
        v.forward()
        self.assertAlmostEqual(v.value, v_)
        # clear gradient
        v.zero_grad()
        v.backward()
        self.assertEqual(v.grad, 1.0)
        self.assertAlmostEqual(self.v1.grad, v1_grad_)
        # accumulate gradient
        v.backward()
        self.assertEqual(v.grad, 2.0)
        self.assertAlmostEqual(self.v1.grad, 3.0*v1_grad_)

    def test_exp_f(self):
        v = F.exp(self.v1)
        v_ = math.exp(self.v1_)
        v1_grad_ = math.exp(self.v1_)
        self.assertIsNone(v.value, None)
        v.forward()
        self.assertAlmostEqual(v.value, v_)
        # clear gradient
        v.zero_grad()
        v.backward()
        self.assertEqual(v.grad, 1.0)
        self.assertAlmostEqual(self.v1.grad, v1_grad_)
        # accumulate gradient
        v.backward()
        self.assertEqual(v.grad, 2.0)
        self.assertAlmostEqual(self.v1.grad, 3.0*v1_grad_)

    def test_sigmoid_f(self):
        v = F.sigmoid(self.v1)
        v_ = 1/ (1 + math.exp(-self.v1_))
        v1_grad_ = math.exp(-self.v1_) / ((1 + math.exp(-self.v1_)) ** 2)
        self.assertIsNone(v.value, None)
        v.forward()
        self.assertAlmostEqual(v.value, v_)
        # clear gradient
        v.zero_grad()
        v.backward()
        self.assertEqual(v.grad, 1.0)
        self.assertAlmostEqual(self.v1.grad, v1_grad_)
        # accumulate gradient
        v.backward()
        self.assertEqual(v.grad, 2.0)
        self.assertAlmostEqual(self.v1.grad, 3.0*v1_grad_)

    def test_relu_f(self):
        a = F.relu(self.v0)
        b = F.relu(self.v1)
        v0_, v1_ = max(self.v0_, 0.0), max(self.v1_, 0.0)
        v0_grad_ = 1.0 if self.v0_ > 0.0 else 0.0
        v1_grad_ = 1.0 if self.v1_ > 0.0 else 0.0
        self.assertIsNone(a.value, None)
        self.assertIsNone(b.value, None)
        a.forward()
        b.forward()
        self.assertAlmostEqual(a.value, v0_)
        self.assertAlmostEqual(b.value, v1_)
        # clear gradient
        a.zero_grad()
        a.backward()
        self.assertEqual(a.grad, 1.0)
        self.assertAlmostEqual(self.v0.grad, v0_grad_)
        b.zero_grad()
        b.backward()
        self.assertEqual(b.grad, 1.0)
        self.assertAlmostEqual(self.v1.grad, v1_grad_)

    def test_set_value(self):
        v = self.v0 + self.v1
        vv = v * self.v2
        vv.forward()
        v_ = self.v0_ + self.v1_
        vv_ = v_ * self.v2_
        self.assertAlmostEqual(v.value, v_)
        self.assertAlmostEqual(vv.value, vv_)
        prev_vv = vv.value
        # set_value will be forward override
        v.set_value(4, True)
        vv.forward()
        self.assertAlmostEqual(vv.value, prev_vv)
        # set_value will NOT be forward override
        self.v0.set_value(100, True)
        vv.forward()
        self.assertNotAlmostEqual(vv.value, prev_vv)

    def test_positive(self):
        self.v0.set_value(-3.0, False)
        v = +self.v0
        v.forward()
        self.assertAlmostEqual(v.value, -3.0)

    def test_negative(self):
        self.v0.set_value(-3.0, False)
        v = -self.v0
        v.forward()
        self.assertAlmostEqual(v.value, 3.0)

    def test_absolute(self):
        self.v0.set_value(-3.0, False)
        v = abs(self.v0)
        v.forward()
        self.assertAlmostEqual(v.value, 3.0)